Final Exam Solution
 Traitement Quantique de l'Information

Problem 1: Quiz 20 points

1) [5 pts] True. Since \mathbf{M} is a unitary matrix $\left(\mathbf{M M}^{\dagger}=\mathbf{M}^{\dagger} \mathbf{M}=I\right)$, it is a valid quantum operation.
2) [5 pts] False. Since the four states are orthogonal in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$, so they can be cloned.
3) [5 pts] False. $|\uparrow\rangle$ and $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ are not orthogonal in \mathbb{C}^{2}, but they are represented by orthogonal vectors on Bloch sphere.
4) [5 pts] False. Since Bob is measuring in the $\left\{|\alpha\rangle,\left|\alpha_{\perp}\right\rangle\right\}$ basis, his qubit will be in one these two states, independent of Alice's measurement.

Problem 2: Interferometer 30 pts

1) [10 pts]After the first semi-transparent mirror the photon in state

$$
\mathbf{H}|2\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle)
$$

After the reflecting mirrors the state is

$$
\mathbf{R}\left(\frac{|1\rangle-|2\rangle}{\sqrt{2}}\right)=\frac{-|1\rangle+|2\rangle}{\sqrt{2}}
$$

After the dephasor,

$$
\mathbf{P}_{\phi}\left(\frac{-|1\rangle+|2\rangle}{\sqrt{2}}\right)=\frac{-e^{i \phi}|1\rangle+|2\rangle}{\sqrt{2}}
$$

And, after the last semi-transparent mirror the state is

$$
\begin{aligned}
\mathbf{H}\left(\frac{-e^{i \phi}|1\rangle+|2\rangle}{\sqrt{2}}\right) & =\frac{1}{\sqrt{2}}\left(-\frac{e^{i \phi}}{\sqrt{2}}(|1\rangle+|2\rangle)+\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle)\right) \\
& =\frac{1-e^{i \phi}}{2}|1\rangle-\frac{1+e^{i \phi}}{2}|2\rangle
\end{aligned}
$$

2) $[5 \mathrm{pts}]$
$\mathbb{P}\left(D_{1}\right)=\left|\frac{1-e^{i \phi}}{2}\right|^{2}=\frac{1}{4}\left((1-\cos (\phi))^{2}+\sin (\phi)^{2}\right)=\frac{1}{4}(2-2 \cos (\phi))=\frac{1}{2}(1-\cos (\phi))=\sin \left(\frac{\phi}{2}\right)^{2}$
$\mathbb{P}\left(D_{2}\right)=\left|\frac{1+e^{i \phi}}{2}\right|^{2}=\frac{1}{4}\left((1+\cos (\phi))^{2}+\sin (\phi)^{2}\right)=\frac{1}{4}(2+2 \cos (\phi))=\frac{1}{2}(1+\cos (\phi))=\cos \left(\frac{\phi}{2}\right)^{2}$

Either D_{1} or D_{2} clic. Only one receives energy for each coming photon.
3) [2 pts] Matrix \mathbf{A} has to be unitary, $\mathbf{A A}^{\dagger}=\mathbf{A}^{\dagger} \mathbf{A}=I$. From this constraint we must have that columns (and rows) of the matrix are unit norm and orthogonal.
First and the third columns must be orthogonal, so $\epsilon X=-\epsilon \sqrt{1-\epsilon^{2}}$, which implies (for $\epsilon \neq 0) X=-\sqrt{1-\epsilon^{2}}$.
4) [13 pts] Recall that the state after the dephrasor is $\frac{-e^{i \phi}|1\rangle+|2\rangle}{\sqrt{2}}$. Applying matrix \mathbf{A}, we get

$$
\begin{aligned}
\mathbf{A}\left(\frac{-e^{i \phi}|1\rangle+|2\rangle}{\sqrt{2}}\right) & =\frac{-e^{i \phi}}{\sqrt{2}} \mathbf{A}|1\rangle+\frac{1}{\sqrt{2}} \mathbf{A}|2\rangle \\
& =\frac{-e^{i \phi}}{\sqrt{2}}|1\rangle+\frac{1}{\sqrt{2}}\left(\sqrt{1-\epsilon^{2}}|0\rangle+\epsilon|2\rangle\right) \\
& =\sqrt{\frac{1-\epsilon^{2}}{2}}|0\rangle-\frac{e^{i \phi}}{\sqrt{2}}|1\rangle+\frac{\epsilon}{\sqrt{2}}|2\rangle
\end{aligned}
$$

After the last semi-transparent mirror the final state is

$$
\begin{aligned}
\mathbf{H}\left(\sqrt{\frac{1-\epsilon^{2}}{2}}|0\rangle-\frac{e^{i \phi}}{\sqrt{2}}|1\rangle+\frac{\epsilon}{\sqrt{2}}|2\rangle\right) & =\sqrt{\frac{1-\epsilon^{2}}{2}} \mathbf{H}|0\rangle-\frac{e^{i \phi}}{\sqrt{2}} \mathbf{H}|1\rangle+\frac{\epsilon}{\sqrt{2}} \mathbf{H}|2\rangle \\
& =\sqrt{\frac{1-\epsilon^{2}}{2}}|0\rangle-\frac{e^{i \phi}}{\sqrt{2}} \frac{|1\rangle+|2\rangle}{\sqrt{2}}+\frac{\epsilon}{\sqrt{2}} \frac{|1\rangle-|2\rangle}{\sqrt{2}} \\
& =\sqrt{\frac{1-\epsilon^{2}}{2}}|0\rangle+\frac{\epsilon-e^{i \phi}}{2}|1\rangle-\frac{\epsilon+e^{i \phi}}{2}|2\rangle
\end{aligned}
$$

So, for probabilities we have

$$
\begin{gathered}
\mathbb{P}(\text { Absorption })=\frac{1-\epsilon^{2}}{2} \\
\mathbb{P}\left(D_{1}\right)=\left|\frac{\epsilon-e^{i \phi}}{2}\right|^{2}=\frac{1}{4}\left((\epsilon-\cos (\phi))^{2}+\sin (\phi)^{2}\right)=\frac{1}{4}\left(1+\epsilon^{2}-2 \epsilon \cos (\phi)\right) \\
\mathbb{P}\left(D_{2}\right)=\left|\frac{\epsilon+e^{i \phi}}{2}\right|^{2}=\frac{1}{4}\left((\epsilon+\cos (\phi))^{2}+\sin (\phi)^{2}\right)=\frac{1}{4}\left(1+\epsilon^{2}+2 \epsilon \cos (\phi)\right)
\end{gathered}
$$

We can see that the probabilities sum to 1 .

Problem 3: Entanglement 20 pts

1) $[5 \mathrm{pts}] \mathcal{H}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$, since there 4 qubits in total. The total state is $|\phi\rangle \otimes|\psi\rangle$
2) [10 pts] Possible states of Alice's qubits are $\left|B_{1}\right\rangle,\left|B_{2}\right\rangle,\left|B_{3}\right\rangle,\left|B_{4}\right\rangle$. Suppose they are in state $\left|B_{1}\right\rangle$, so the measurement by Alice is the projection $\left|B_{1}\right\rangle\left\langle B_{1}\right|$ applying on qubits in Alice's possession. Now, we compute the states of Bob and Charlies's qubits.

Firs note that, we have

$$
\left.\begin{array}{rl}
\left\langle\left. B_{1}\right|_{A}(\alpha|0\rangle+\beta|1\rangle)_{A}\right. & \left(\frac{1}{\sqrt{2}}|0\rangle_{A}|00\rangle_{B C}+\frac{1}{\sqrt{2}}|1\rangle_{A}|11\rangle_{B C}\right) \\
& =\left\langle\left. B_{1}\right|_{A} \frac{1}{\sqrt{2}}\left(\alpha|00\rangle_{A}|00\rangle_{B C}+\alpha|01\rangle_{A}|11\rangle_{B C}+\beta|10\rangle_{A}|00\rangle_{B C}+\beta|11\rangle_{A}|11\rangle_{B C}\right)\right. \\
\quad=\frac{\alpha}{2}|00\rangle_{B C}+\frac{\beta}{2}|11\rangle_{B C}
\end{array}\right\}
$$

Normalizing the state, we get

$$
\left|B_{1}\right\rangle_{A}\left(\alpha|00\rangle_{B C}+\beta|11\rangle_{B C}\right)
$$

By similar calculations for other possible states, we find that the final possible states are

$$
\begin{array}{r}
\left|B_{1}\right\rangle_{A}\left(\alpha|00\rangle_{B C}+\beta|11\rangle_{B C}\right) \\
\left|B_{2}\right\rangle_{A}\left(\alpha|11\rangle_{B C}+\beta|00\rangle_{B C}\right) \\
\left|B_{3}\right\rangle_{A}\left(\alpha|11\rangle_{B C}-\beta|00\rangle_{B C}\right) \\
\left|B_{4}\right\rangle_{A}\left(\alpha|00\rangle_{B C}-\beta|11\rangle_{B C}\right)
\end{array}
$$

3) [5 pts] Only two classical bits are required, one for Bob and one for Charlie.

If Alices measures $\left|B_{1}\right\rangle$, then Bob and Charlie's qubits are in the state $\alpha|00\rangle_{B C}+$ $\beta|11\rangle_{B C}$, so they should do nothing. Alice sends 0 to both Bob and Charlie.

If Alices measures $\left|B_{2}\right\rangle$, then Bob and Charlie's qubits are in the state $\alpha|11\rangle_{B C}+$ $\beta|00\rangle_{B C}$, so they should apply $\mathbf{X}_{B} \otimes \mathbf{X}_{C}$. Alice sends 1 to both Bob and Charlie.

If Alices measures $\left|B_{3}\right\rangle$, then Bob and Charlie's qubits are in the state $\alpha|11\rangle_{B C}-$ $\beta|00\rangle_{B C}$, so they should apply $\mathbf{X}_{B} \otimes \mathbf{X}_{C}$. Alice sends 1 to both Bob and Charlie.

If Alices measures $\left|B_{4}\right\rangle$, then Bob and Charlie's qubits are in the state $\alpha|00\rangle_{B C}-$ $\beta|11\rangle_{B C}$, so they should do nothing. Alice sends 0 to both Bob and Charlie.

Problem 4: Spin and Density Matrix 30 pts

1) $[6 \mathrm{pts}]$

$$
\mathbf{U}_{t}=e^{-\frac{i t}{\hbar} \mathbf{H}}=e^{\frac{i \omega t}{2} \sigma_{z}}=\left[\begin{array}{cc}
e^{\frac{i \omega t}{2}} & 0 \\
0 & e^{-\frac{i \omega t}{2}}
\end{array}\right]
$$

In the last equality, we used the fact that σ_{z} is a diagonal matrix. Note that $|\uparrow\rangle$ and $|\downarrow\rangle$ are eigenvectors of \mathbf{U}_{t} with eigenvalues $e^{\frac{i \omega t}{2}}, e^{-\frac{i \omega t}{2}}$, respectively.

$$
\mathbf{U}_{t}\left|\psi_{0}\right\rangle=e^{\frac{i \omega t}{2}} \cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{-\frac{i \omega t}{2}} e^{i \phi} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle=e^{\frac{i \omega t}{2}}\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i(\phi-\omega t)} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle\right)
$$

The trajectory on Bloch sphere is shown below.

2) $[6 p t s]$

$$
\begin{aligned}
E(t)=\left\langle\psi_{t}\right| \mathbf{H}\left|\psi_{t}\right\rangle & =-\frac{\hbar \omega}{2}\left\langle\psi_{t}\right| \sigma_{z}\left|\psi_{t}\right\rangle \\
& =-\frac{\hbar \omega}{2}\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{-i(\phi-\omega t)} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle\right)\left(\cos \left(\frac{\theta}{2}\right)\langle\uparrow|-e^{i(\phi-\omega t)} \sin \left(\frac{\theta}{2}\right)\langle\downarrow|\right) \\
& =-\frac{\hbar \omega}{2}\left(\cos \left(\frac{\theta}{2}\right)^{2}-\sin \left(\frac{\theta}{2}\right)^{2}\right)=-\frac{\hbar \omega}{2} \cos (\theta)
\end{aligned}
$$

where in the second equality we used the fact that $|\uparrow\rangle$ and $|\downarrow\rangle$ are eigenvectors of σ_{z} with eigenvalues $1,-1$, respectively.
For $\theta=0, E=-\frac{\hbar \omega}{2}$, which is the minimal energy.
For $\theta=\pi / 2, E=0$.
For $\theta=\pi, E=+\frac{\hbar \omega}{2}$, which is the maximal energy.
For variance we have

$$
\mathbf{H}^{2}=\left(\frac{\hbar \omega}{2}\right)^{2} \sigma_{z}^{2}=\left(\frac{\hbar \omega}{2}\right)^{2} \mathbf{I}
$$

$\operatorname{Var}=\left\langle\psi_{t}\right| \mathbf{H}^{2}\left|\psi_{t}\right\rangle-\left\langle\psi_{t}\right| \mathbf{H}\left|\psi_{t}\right\rangle^{2}=\left(\frac{\hbar \omega}{2}\right)^{2}-\left(\frac{\hbar \omega}{2}\right)^{2} \cos (\theta)^{2}=\left(\frac{\hbar \omega}{2}\right)^{2}\left(1-\cos (\theta)^{2}\right)$
Variance vanishes for $\theta=0, \pi$.
3) $[6 p t s]$

$$
\begin{aligned}
\rho_{0} & =\frac{1}{2}\left(\mathbf{I}+a_{x} \sigma_{x}+a_{z} \sigma_{z}\right)=\frac{1}{2}\left[\begin{array}{cc}
1+a_{z} & a_{x} \\
a_{x} & 1-a_{z}
\end{array}\right] \\
\rho_{t} & =\mathbf{U}_{t} \rho_{0} \mathbf{U}_{t}^{\dagger} \\
& =\left[\begin{array}{cc}
e^{\frac{i \omega t}{2}} & 0 \\
0 & e^{-\frac{i \omega t}{2}}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1+a_{z} & a_{x} \\
a_{x} & 1-a_{z}
\end{array}\right]\left[\begin{array}{cc}
e^{-\frac{i \omega t}{2}} & 0 \\
0 & e^{\frac{i \omega t}{2}}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
e^{\frac{i \omega t}{2}} & 0 \\
0 & e^{-\frac{i \omega t}{2}}
\end{array}\right]\left[\begin{array}{cc}
e^{-\frac{i \omega t}{2}}\left(1+a_{z}\right) & e^{\frac{i \omega t}{2}} a_{x} \\
e^{-\frac{i \omega t}{2}} a_{x} & e^{\frac{i \omega t}{2}}\left(1-a_{z}\right)
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
1+a_{z} & e^{i \omega t} a_{x} \\
e^{-i \omega t} a_{x} & 1-a_{z}
\end{array}\right]
\end{aligned}
$$

4) [6 pts] Note that we can write $\rho_{t}=\frac{1}{2}\left(\mathbf{I}+\overrightarrow{a_{t}} \cdot \vec{\sigma}\right)$, where

$$
a_{x}(t)=a_{x} \cos (\omega t), \quad a_{y}(t)=-a_{x} \sin (\omega t), \quad a_{z}(t)=a_{z}
$$

For $a=(1 / 2,0,1 / 2)$, the trajectory on bloch sphere is given below

5) $[6 \mathrm{pts}]$

$$
\begin{aligned}
E(t) & =\operatorname{Tr}\left[\mathbf{H} \rho_{t}\right] \\
& \left.=-\frac{\hbar \omega}{4} \operatorname{Tr}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1+a_{z} & e^{i \omega t} a_{x} \\
e^{-i \omega t} a_{x} & 1-a_{z}
\end{array}\right]\right] \\
& =-\frac{\hbar \omega}{4} \operatorname{Tr}\left[\left[\begin{array}{cc}
1+a_{z} & e^{i \omega t} a_{x} \\
-e^{-i \omega t} a_{x} & -1+a_{z}
\end{array}\right]\right] \\
& =-\frac{\hbar \omega}{2} a_{z}
\end{aligned}
$$

We see that the energy is independent of t and a_{x}.
For variance, we have

$$
\begin{aligned}
\operatorname{Var} & =\operatorname{Tr}\left[\mathbf{H}^{2} \rho_{t}\right]-\operatorname{Tr}\left[\mathbf{H} \rho_{t}\right]^{2} \\
& =\left(\frac{\hbar \omega}{2}\right)^{2} \operatorname{Tr}\left[\mathbf{I} \rho_{t}\right]-\left(\frac{\hbar \omega}{2}\right)^{2} a_{z}^{2} \\
& =\left(\frac{\hbar \omega}{2}\right)^{2} \operatorname{Tr}\left[\frac{1}{2}\left[\begin{array}{cc}
1+a_{z} & e^{i \omega t} a_{x} \\
e^{-i \omega t} a_{x} & 1-a_{z}
\end{array}\right]\right]-\left(\frac{\hbar \omega}{2}\right)^{2} a_{z}^{2} \\
& =\left(\frac{\hbar \omega}{2}\right)^{2}\left(1-a_{z}^{2}\right)
\end{aligned}
$$

Variance vanishes for $a_{z}= \pm 1$, which are the states $|\uparrow\rangle,|\downarrow\rangle$.

