Quantum Inf. Proc.

Problem 1

question a (5 points)
(2 points) Hilbert Space: \mathbb{C}^{4} or $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$
(3 points) Unitary Matrix (be careful for the order)

$$
\begin{equation*}
U=\left(S_{1} \otimes S_{2}\right)\left(R_{1} \otimes R_{2}\right)\left(D_{1}(\alpha) \otimes D_{2}(\beta)\right) \tag{1}
\end{equation*}
$$

question \mathbf{b} (7 points)
(2 points) First dephasing steps:

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=(D(\alpha) \otimes D(\beta))|\psi\rangle=\frac{1}{\sqrt{2}}\left(e^{i(\alpha+\beta)}|x x\rangle+|y y\rangle\right) \tag{2}
\end{equation*}
$$

(2 points) Then the semi-reflecting mirrors:

$$
\begin{equation*}
\left|\psi_{2}\right\rangle=(R \otimes R)\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(e^{i(\alpha+\beta)}|y y\rangle+|x x\rangle\right) \tag{3}
\end{equation*}
$$

(3 points) then the semi-transparents mirrors:

$$
\begin{align*}
\left|\psi_{3}\right\rangle=(S \otimes S)\left|\psi_{2}\right\rangle & =\frac{1}{2 \sqrt{2}}\left(e^{i(\alpha+\beta)}\left(|x\rangle_{1}-|y\rangle_{1}\right) \otimes\left(|x\rangle_{2}-|y\rangle_{2}\right)\right) \tag{4}\\
& +\frac{1}{2 \sqrt{2}}\left(\left(|x\rangle_{1}+|y\rangle_{1}\right) \otimes\left(|x\rangle_{2}+|y\rangle_{2}\right)\right) \tag{5}\\
& =\frac{1}{2 \sqrt{2}}\left(\left(1+e^{i(\alpha+\beta)}\right)(|x x\rangle+|y y\rangle)+\left(1-e^{i(\alpha+\beta)}\right)(|x y\rangle+|y x\rangle)\right) \tag{6}
\end{align*}
$$

question c (3 points)
(2 points) Possible states after measurement: $\{|x x\rangle,|y y\rangle,|x y\rangle,|y x\rangle\}$ (1 points) 2 detectors will always click at each shot
question \mathbf{d} (4 points)

$$
\begin{align*}
& P(|\psi\rangle \rightarrow|y y\rangle)=P(|\psi\rangle \rightarrow|x x\rangle)=\frac{1}{2} \cos \left(\frac{\alpha+\beta}{2}\right)^{2} \tag{7}\\
& P(|\psi\rangle \rightarrow|x y\rangle)=P(|\psi\rangle \rightarrow|y x\rangle)=\frac{1}{2} \sin \left(\frac{\alpha+\beta}{2}\right)^{2} \tag{8}
\end{align*}
$$

Other possible solution:

$$
\begin{align*}
& P(|\psi\rangle \rightarrow|y y\rangle)=P(|\psi\rangle \rightarrow|x x\rangle)=\frac{1}{4}(1+\cos (\alpha+\beta)) \tag{10}\\
& P(|\psi\rangle \rightarrow|x y\rangle)=P(|\psi\rangle \rightarrow|y x\rangle)=\frac{1}{4}(1-\cos (\alpha+\beta)) \tag{11}
\end{align*}
$$

question e (6 points)
(2 points) Same direction with probability 1:

$$
\begin{align*}
& P(|\psi\rangle \rightarrow|x y\rangle)=P(|\psi\rangle \rightarrow|y x\rangle)=\frac{1}{2} \sin \left(\frac{\alpha+\beta}{2}\right)^{2}=0 \tag{13}\\
\Longleftrightarrow & \frac{\alpha+\beta}{2} \in \pi \mathbb{Z} \tag{14}\\
\Longleftrightarrow & (\alpha+\beta) \in 2 \pi \mathbb{Z} \tag{15}
\end{align*}
$$

(2 points) Opposite direction with probability 1:

$$
\begin{align*}
& P(|\psi\rangle \rightarrow|y y\rangle)=P(|\psi\rangle \rightarrow|x x\rangle)=\frac{1}{2} \cos \left(\frac{\alpha+\beta}{2}\right)^{2}=0 \tag{16}\\
\Longleftrightarrow & \frac{\alpha+\beta}{2} \in \frac{\pi}{2}+\pi \mathbb{Z} \tag{17}\\
\Longleftrightarrow & (\alpha+\beta) \in \pi+2 \pi \mathbb{Z} \tag{18}
\end{align*}
$$

(2 points) any direction with uniform probability:

$$
\begin{align*}
& \cos \left(\frac{\alpha+\beta}{2}\right)^{2}=\sin \left(\frac{\alpha+\beta}{2}\right)^{2} \tag{19}\\
\Longleftrightarrow & \frac{\alpha+\beta}{2} \in \frac{\pi}{4}+\frac{\pi}{2} \mathbb{Z} \tag{20}\\
\Longleftrightarrow & (\alpha+\beta) \in \frac{\pi}{2}+\pi \mathbb{Z} \tag{21}
\end{align*}
$$

Quantum Inf. Proc.

Problem 2

question a (6 points)
(4 points) Calculus:

$$
\begin{align*}
P\left(a_{k}=1, b_{k}=1\right) & =P\left(|B\rangle \rightarrow\left|\alpha_{k}\right\rangle \otimes\left|\beta_{k}\right\rangle\right) \tag{22}\\
& =\left|\left\langle B \mid \alpha_{k}, \beta_{k}\right\rangle\right|^{2} \tag{23}\\
& =\frac{1}{2}\left(\left\langle\alpha_{k} \mid 0\right\rangle\left\langle\beta_{k} \mid 0\right\rangle+\left\langle\alpha_{k} \mid 1\right\rangle\left\langle\beta_{k} \mid 1\right\rangle\right)^{2} \tag{24}\\
& =\frac{1}{2}\left(\cos \left(\alpha_{k}\right) \cos \left(\beta_{k}\right)+\sin \left(\alpha_{k}\right) \sin \left(\beta_{k}\right)\right)^{2} \tag{25}\\
& =\frac{1}{2} \cos \left(\alpha_{k}-\beta_{k}\right)^{2} \tag{26}\\
P\left(a_{k}=1, b_{k}=-1\right) & =P\left(|B\rangle \rightarrow\left|\alpha_{k}\right\rangle \otimes\left|\beta_{k, \perp}\right\rangle\right) \tag{27}\\
& =\left|\left\langle B \mid \alpha_{k}, \beta_{k, \perp}\right\rangle\right|^{2} \tag{28}\\
& =\frac{1}{2}\left(\left\langle\alpha_{k} \mid 0\right\rangle\left\langle\beta_{k, \perp} \mid 0\right\rangle+\left\langle\alpha_{k} \mid 1\right\rangle\left\langle\beta_{k, \perp} \mid 1\right\rangle\right)^{2} \tag{29}\\
& =\frac{1}{2}\left(-\cos \left(\alpha_{k}\right) \sin \left(\beta_{k}\right)+\sin \left(\alpha_{k}\right) \cos \left(\beta_{k}\right)\right)^{2} \tag{30}\\
& =\frac{1}{2} \sin \left(\alpha_{k}-\beta_{k}\right)^{2} \tag{31}
\end{align*}
$$

Similarly:

$$
\begin{gather*}
P\left(a_{k}=-1, b_{k}=-1\right)=\frac{1}{2} \cos \left(\alpha_{k}-\beta_{k}\right)^{2} \tag{32}\\
P\left(a_{k}=-1, b_{k}=1\right)=\frac{1}{2} \sin \left(\alpha_{k}-\beta_{k}\right)^{2} \tag{33}
\end{gather*}
$$

(2 points) Calculus:

$$
\begin{align*}
& P\left(a_{k}=1\right)=P\left(a_{k}=1, b_{k}=1\right)+P\left(a_{k}=1, b_{k}=-1\right)=\frac{1}{2} \tag{35}\\
& P\left(a_{k}=-1\right)=P\left(a_{k}=-1, b_{k}=1\right)+P\left(a_{k}=-1, b_{k}=-1\right)=\frac{1}{2} \tag{36}\\
& P\left(b_{k}=1\right)=P\left(a_{k}=1, b_{k}=1\right)+P\left(a_{k}=-1, b_{k}=1\right)=\frac{1}{2} \tag{37}\\
& P\left(b_{k}=-1\right)=P\left(a_{k}=1, b_{k}=-1\right)+P\left(a_{k}=-1, b_{k}=-1\right)=\frac{1}{2} \tag{38}
\end{align*}
$$

question \mathbf{b} (3 points)
(2 points) When $\alpha_{k}=\beta_{k}=0$ we have:

$$
\begin{equation*}
P\left(a_{k}=-1, b_{k}=1\right)=P\left(a_{k}=1, b_{k}=-1\right)=\frac{1}{2} \sin (0)^{2}=0 \tag{39}
\end{equation*}
$$

Or similarly:

$$
\begin{equation*}
P\left(a_{k}=-1, b_{k}=1\right)=P\left(a_{k}=1, b_{k}=-1\right)=\frac{1}{2} \cos (0)^{2}=\frac{1}{2} \tag{40}
\end{equation*}
$$

(1 points) Length Calculus:

$$
\begin{equation*}
P\left(\alpha_{k}=0, \beta_{k}=0\right)=P\left(\alpha_{k}=0\right) P\left(\beta_{k}=0\right)=\frac{1}{9} \tag{41}
\end{equation*}
$$

So if $L(N)$ is the length:

$$
\begin{equation*}
L(N)=\sum_{k=1}^{N} \delta_{0}\left(\alpha_{k}\right) \delta_{0}\left(\beta_{k}\right) \tag{42}
\end{equation*}
$$

Thus using the Law of Large Number, when N is large:

$$
\begin{equation*}
\frac{L(N)}{N} \simeq \mathbb{E}\left[\delta_{0}\left(\alpha_{k}\right) \delta_{0}\left(\beta_{k}\right)\right]=P\left(\alpha_{k}=0, \beta_{k}=0\right)=\frac{1}{9} \tag{43}
\end{equation*}
$$

question c (5 points)
(3 points) Empirical average:

$$
\begin{equation*}
\frac{1}{\frac{N}{9}}\left(\sum_{\alpha_{k}=0, \beta_{k}=\frac{\pi}{8}} a_{k} b_{k}+\sum_{\alpha_{k}=0, \beta_{k}=\frac{\pi}{8}} a_{k} b_{k}+\sum_{\alpha_{k}=-\frac{\pi}{4}, \beta_{k}=\frac{\pi}{8}} a_{k} b_{k}+\sum_{\alpha_{k}=-\frac{\pi}{4}, \beta_{k}=-\frac{\pi}{8}} a_{k} b_{k}\right) \tag{44}
\end{equation*}
$$

(1 points) Theoretical average: $\langle B| S|B\rangle$
(1 points) Expected result from Bell inequality: $2 \sqrt{2}$
question d (3 points)
(1 points) Recall the Bell state satisfies the relation for any θ :

$$
\begin{equation*}
|B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left(|\theta \theta\rangle+\left|\theta_{\perp} \theta_{\perp}\right\rangle\right) \tag{45}
\end{equation*}
$$

(2 points) Therefore, for any measurement of Eve in the basis $\left\{|\theta\rangle,\left|\theta_{\perp}\right\rangle\right\}$, it leaves the particles in the state $|\theta \theta\rangle$ or $\left|\theta_{\perp} \theta_{\perp}\right\rangle$
question e (8 points)
(5 points) In general:

$$
\begin{equation*}
\left\langle\gamma \gamma^{\prime}\right| A(\alpha) \otimes B(\beta)\left|\gamma \gamma^{\prime}\right\rangle=\langle\gamma| A(\alpha)|\gamma\rangle\left\langle\gamma^{\prime}\right| B(\alpha)\left|\gamma^{\prime}\right\rangle \tag{46}
\end{equation*}
$$

And:

$$
\begin{align*}
\langle\gamma| A(\alpha)|\gamma\rangle & =\left(+1\langle\gamma \mid \alpha\rangle\langle\alpha \mid \gamma\rangle+(-1)\left\langle\gamma \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \gamma\right\rangle\right) \tag{47}\\
& =\cos (\alpha-\gamma)^{2}-\sin (\alpha-\gamma)^{2} \tag{48}\\
& =\cos (2(\alpha-\gamma)) \tag{49}
\end{align*}
$$

And similarly:

$$
\begin{equation*}
\left\langle\gamma^{\prime}\right| B(\beta)\left|\gamma^{\prime}\right\rangle=\cos \left(2\left(\beta-\gamma^{\prime}\right)\right) \tag{50}
\end{equation*}
$$

So In general:

$$
\begin{equation*}
\left\langle\gamma \gamma^{\prime}\right| A(\alpha) \otimes B(\beta)\left|\gamma \gamma^{\prime}\right\rangle=\cos (2(\alpha-\gamma)) \cos \left(2\left(\beta-\gamma^{\prime}\right)\right) \tag{51}
\end{equation*}
$$

So:

$$
\begin{align*}
\left\langle\gamma \gamma^{\prime}\right| S\left|\gamma \gamma^{\prime}\right\rangle & =\cos (2 \gamma) \cos \left(\frac{\pi}{4}-2 \gamma^{\prime}\right)+\cos (2 \gamma) \cos \left(\frac{\pi}{4}+2 \gamma^{\prime}\right) \tag{52}\\
& -\cos \left(\frac{\pi}{2}+2 \gamma\right) \cos \left(\frac{\pi}{4}-2 \gamma^{\prime}\right)+\cos \left(\frac{\pi}{2}+2 \gamma\right) \cos \left(\frac{\pi}{4}+2 \gamma^{\prime}\right) \tag{53}
\end{align*}
$$

(1 points) As stated in previous question, we have: $\left|\gamma \gamma^{\prime}\right\rangle=|\theta \theta\rangle$ or $\left|\gamma \gamma^{\prime}\right\rangle=\left|\theta_{\perp} \theta_{\perp}\right\rangle$ (2 points) For $\left|\gamma \gamma^{\prime}\right\rangle=|\theta \theta\rangle$:

$$
\begin{align*}
\left\langle\gamma \gamma^{\prime}\right| S\left|\gamma \gamma^{\prime}\right\rangle & =\cos (2 \theta) \cos \left(\frac{\pi}{4}-2 \theta\right)+\cos (2 \theta) \cos \left(\frac{\pi}{4}+2 \theta\right) \tag{54}\\
& -\cos \left(\frac{\pi}{2}+2 \theta\right) \cos \left(\frac{\pi}{4}-2 \theta\right)+\cos \left(\frac{\pi}{2}+2 \theta\right) \cos \left(\frac{\pi}{4}+2 \theta\right) \tag{55}\\
& =\cos (2 \theta)\left(\cos \left(\frac{\pi}{4}-2 \theta\right)+\cos \left(\frac{\pi}{4}+2 \theta\right)\right) \tag{56}\\
& +\cos \left(\frac{\pi}{2}+2 \theta\right)\left(\cos \left(\frac{\pi}{4}+2 \theta\right)-\cos \left(\frac{\pi}{4}-2 \theta\right)\right) \tag{57}\\
& =\cos (2 \theta) 2 \cos \left(\frac{\pi}{4}\right) \cos (2 \theta)-\cos \left(\frac{\pi}{2}+2 \theta\right) 2 \sin \left(\frac{\pi}{4}\right) \sin (2 \theta) \tag{58}\\
& =\sqrt{2}\left(\cos (2 \theta) \cos (2 \theta)-\cos \left(\frac{\pi}{2}+2 \theta\right) \sin (2 \theta)\right) \tag{59}\\
& =\sqrt{2}(\cos (2 \theta) \cos (2 \theta)+\sin (2 \theta) \sin (2 \theta)) \tag{60}\\
& =\sqrt{2} \cos (2 \theta-2 \theta) \tag{61}\\
& =\sqrt{2} \tag{62}
\end{align*}
$$

So the test would be to check if the empirical correlation is above this value.

Quantum Inf. Proc.
Exam Correction
February 10, 2022

Problem 3

question a (6 points)
(1 points) Recall: $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=I$ and $\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}=0$ etc
(2 points) Calculus:

$$
\begin{align*}
(\hat{n} \cdot \vec{\sigma})^{2} & =n_{x}^{2} \sigma_{x}^{2}+n_{y}^{2} \sigma_{y}^{2}+n_{z}^{2} \sigma_{z}^{2}+n_{x} n_{y}\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}\right)+n_{x} n_{z}\left(\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{x}\right)+n_{y} n_{z}\left(\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{y}\right) \\
& =\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) I=I \tag{64}
\end{align*}
$$

(3 points) Calculus:

$$
\begin{align*}
e^{i \alpha \hat{n} \cdot \vec{\sigma}} & =\sum_{k \geq 0} \frac{1}{k!} i^{k} \alpha^{k}(\hat{n} \cdot \vec{\sigma})^{k} \tag{66}\\
& =\sum_{k \geq 0} \frac{1}{(2 k)!} i^{2 k} \alpha^{2 k} I+\sum_{k \geq 0} \frac{1}{(2 k+1)!} i^{2 k+1} \alpha^{2 k+1} \hat{n} \cdot \vec{\sigma} \tag{67}\\
& =\sum_{k \geq 0} \frac{1}{(2 k)!}(-1)^{k} \alpha^{2 k} I+i \sum_{k \geq 0} \frac{1}{(2 k+1)!}(-1)^{k} \alpha^{2 k+1} \hat{n} \cdot \vec{\sigma} \tag{68}\\
& =\cos (\alpha) I+i \sin (\alpha) \hat{n} \cdot \vec{\sigma} \tag{69}
\end{align*}
$$

question \mathbf{b} (6 points)
(2 points) The representation:

$$
\begin{align*}
U(t) & =\exp \left(\frac{-i t}{\hbar}\left(\frac{-\hbar \Delta}{2} \sigma_{z}+\frac{-\hbar \omega_{1}}{2} \sigma_{x}\right)\right) \tag{71}\\
& =\exp (i \underbrace{\frac{t \sqrt{\omega_{1}^{2}+\Delta^{2}}}{2}}_{\alpha} \underbrace{\left(\frac{\omega_{1}}{\sqrt{\omega_{1}^{2}+\Delta^{2}}} \sigma_{x}+\frac{\Delta}{\sqrt{\omega_{1}^{2}+\Delta^{2}}} \sigma_{z}\right)}_{\hat{n} \cdot \sigma}) \tag{72}
\end{align*}
$$

(2 points) The solution to the first bullet point is the first column of the matrix:

$$
U(t)=\left(\begin{array}{cc}
\cos (\alpha)+i n_{z} \sin (\alpha) & i n_{x} \sin (\alpha) \tag{73}\\
i n_{x} \sin (\alpha) & \cos (\alpha)-i n_{z} \sin (\alpha)
\end{array}\right)
$$

(2 points) for the second bullet point:

$$
\begin{equation*}
\alpha \simeq \frac{t_{1}}{2} \omega_{1}=\frac{\pi}{4} \quad n_{x} \simeq 1 \quad n_{z}=\frac{\Delta}{\omega_{1}}\left(1-\frac{1}{2} \frac{\Delta^{2}}{\omega_{1}^{2}}(1+o(1))\right)=o(1) \tag{74}
\end{equation*}
$$

So the vector:

$$
\begin{equation*}
\left|\psi\left(t_{1}\right)\right\rangle \simeq\binom{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}} \tag{75}
\end{equation*}
$$

question c (6 points)
Assuming this is the opposite: $\frac{\omega_{1}}{\Delta} \simeq 0$
(2 points) Approximation:

$$
\begin{equation*}
\alpha \simeq \frac{T}{2} \Delta=\frac{\pi}{2} \quad n_{x}=o(1) \quad n_{z} \simeq 1 \tag{76}
\end{equation*}
$$

(2 points) The matrix:

$$
U\left(t_{1}, t_{1}+T\right) \simeq\left(\begin{array}{cc}
i & 0 \tag{77}\\
0 & -i
\end{array}\right)
$$

(2 points) the vector:

$$
\left|\psi\left(t_{1}+T\right)\right\rangle=U\left(t_{1}, t_{1}+T\right)\left|\psi\left(t_{1}\right)\right\rangle \simeq\left(\begin{array}{cc}
i & 0 \tag{78}\\
0 & -i
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}=\binom{\frac{i}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

question \mathbf{d} (4 points)
(2 points) Matrix:

$$
U\left(t_{1}+T, 2 t_{1}+T\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & i \tag{79}\\
i & 1
\end{array}\right)
$$

(2 points) Vector:

$$
\left|\psi\left(2 t_{1}+T\right)\right\rangle=U\left(t_{1}+T, 2 t_{1}+T\right)\left|\psi\left(t_{1}+T\right)\right\rangle \simeq \frac{1}{2}\left(\begin{array}{cc}
1 & i \tag{80}\\
i & 1
\end{array}\right)\binom{i}{1}=\binom{i}{0}=e^{i \frac{\pi}{2}}|\psi(0)\rangle
$$

question e (3 points)
(Check Notes)

