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Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable n-
manifold and let w, n be two continuous, compactly supported n-forms on M. Prove
the following:

(a) Linearity: If a,b € R, then

/M(aw+bn) :a/MaH—b/Mn

Solution. First case: The manifold M is an open subset U of R™, with the
standard orientation. Then we may write

w=hdz"A---Adz"!
n=gd®A---Adz"!
and we have aw +bn = (ah+bg)dz® A --- Ada™"L, therefore

/M(aw+bn):/(ah+bg _a/h+b/ g—a/ w+b/

where the integrals over U are Riemann integrals.

Second case: M is a general manifold, but the supports of w and n are
contained in the image ¢(U) of a single parametrization ¢ : U — M that has
constant sign sgn¢ = +1. Then supp(aw + bn) C suppw Usuppn C ¢(U),
and we have

/(aw+bn):sgn4p~/cp*(aw+bn)
M U

= Sgnw-/U(w*erb@*n)

:asgngo-/(jgo*w—kbsgngp-/(]cp*n:a/Mw+b/M77

General case: We use a family of local parametrizations (U;, ;) whose im-
ages ;(U;) cover supp w and supp 7, and a partition of unity (x;); subordinate
to the open cover (U;); of the set | J; ¢;i(U;). Then by definition of [,, we have

(anrbn):Z Xi(aw +bn)
/M , /M
= Z/M(axz-w +bxin).

Since the forms y; w and y;n have their support contained in ¢;(U;), by the
previous case the last integral is equal to

RAGREIED

)

ZGZ/MXiw+bZ/MXi77

—a/w—i—b/n
M
O

(b) Positivity: If sgn(wl|,) coincides with the orientation of M at every point
p € M where w|, # 0, then | u @ = 0, and the inequality is strict unless w is

identically zero.
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Solution. First case: Let M be an open set U C R", with the standard
orientation. In this case we can write w = hda® A --- A dz""! for some
continuous function h : U — R, and we have sgn(w,) = sgn h(p) for any point
p € U, because dz® A---Adz™ ! is a positive n-form. Therefore the condition
that sgn(w,) coincides with the orientation of M for all points p € U where
wp # 0 is equivalent to the condition that h(p) > 0 for all p € U.

Thus we have [;,w = [;;h >0, and the inequality is strict unless h = 0,
which means w = 0.

Second case: Suppose suppw C U for some local parametrization ¢ : U—
U that has constant sign sgn ¢ = £1. For a point p = ¢(p) where wj, # 0, we
have

sgn((¢"w)lp) = sgn e - sgn(wlp),
——
=11
which implies that sgn(¢*w)|, = sgn ¢. Therefore

/w:sgngo/~go*w20
M U

and the equality holds if and only if ¢*w =0, iff w = 0.

General case: We use a family of local parametrizations (U;, p;) whose
images ;(U;) cover suppw and suppn, and a partition of unity (x;); subor-
dinate to the open cover (U;); of the set |J, ¢;(U;). Since x; > 0, we have
sgn(x;w) > 0, and therefore [,,w = >, [, xiw > 0 with equality iff y;w =0
for all ¢, iff w = 0. O
Diffeomorphism invariance: If f : N — M is an diffeomorphism of constant
sign sgn(f) = £1 (i.e. f is either orientation preserving or orientation revers-

ing), then
[ fro=sar- [ w

Solution. Suppose supp(f*w) C <p(U ) for some local parametrization ¢ : U —
N. Then f o is a local parametrization of M such that suppw C f(¢(U)),
and we have

/Nf*w=/ﬁso*(f*w):/ﬁ(fow)*w=/MW-

In the general case, the result is deduced easily using partitions unity. O

Orientation reversal: If —M denotes M with the reversed orientation, then

[

Solution. Let O be the orientation of M, so that —O is the orientation of
—M. Here the most important case is when supp(w) C ¢(U) for some local
parametrization ¢ : U — M. In the formula

/ w = Sgnoso~/~s0*w,
M U

if we reverse the orientation of M, then the sign of ¢ is also reversed:

/ w:sgn_@cp-/~g0*w:—sgnow-[@*w:—/ w.
-M U U M

In the general case, the result is deduced easily using partitions unity. O

Exercise 13.2. Prove that a continuous k-form is determined by the value of its
integrals (Proposition 7.3.12).

Hint: Use a chart to move the problem to R™, then integrate on small pieces of coordinate planes.
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Solution. Suppose that our manifold is an open set U C R™ (considered as a C!
manifold) and w € QF(U) is a continuous k-form. We write w = Zlenk/ wrdz!. Let

p€Uand I = (g, ...,ix_1) € n* an increasing k-index. We want to show that wr(p)
is determined by values of k-dimensional integrals of w.
LetL:LnI:Rk—)R”:ylﬁxwhere

)

i y® if ¢ =14 for some s € k
p

otherwise.

We restrict ¢ to the open set V = ¢~'U and note that the point p = ~!(p) =
(p*)ser. € R¥ is contained in V.

The pullback by ¢ of w is the continuous k-form t*w = hdy® A--- AdyF~1 € QF(V),
where h = wy o1 € C(V,R).

Denote D5, C R* be the closed ball of center p and radius € > 0 in R*, and let
| D5 | be the volume of this ball. We take € small enough so that D;. C V. Then

1 1
Fw h = (average value of h on Dj.) =9 h(p) = wr(p).

‘Dﬁ,E’ D'ﬁ,s B |DZ775| D;E,e

This means that we can find out the value of wy(p) if we know the value of the integral
i) p. by w for every ¢ > 0. Doing this for each increasing k-index I € ﬂk/‘, we find
pe s

out the value of wl, at the point p € U. Thus any continuous k-form w € Q¥(U) is
determined by the value of its integrals of the form [, Ly eW-
pe

If M is a general C! manifold and w € Q¥(M) is a continuous k-form, we use a local
parametrization ¢ : U — M to get a k-form p*w € QF(U), and then as explained
above we can determine this k-form if we know the value of the integrals of the kind

/ L;J(@*w):/ (poipr)w
D D,

P, P,
But knowing ¢*w is equivalent to knowing w|¢,(U), thus using different parametriza-
tions (U, ¢) we can know w at all points of M. O

Exercise 13.3.* Let f : M — N be a smooth map between smooth manifolds. Then
for all w € QF(M) we have

fH(dw) = d(f*w).
Exercise 13.4.* Let (x,y, z) be the standard coordinates on R? and let (v,w) be the
standard coordinates on R2. Let ¢ : R> — R? be defined as ¢(x,y,2) = (x + 2, zy).
Let o = ¥ dv +vdw and f = v dv A dw be 2-forms on R?. Compute the following
differential forms:

anB, ¢(a), ¢°(B), & () AP*(B).

Solution. (a) Since Q3(R?) is just the zero form, whatever o and 3 are, A3 = 0
(b) We can either use the definition of ¢*(«) to compute the components of this
1-form, or the property that, in local coordinates,

¢*(ardy’) = (ar o ¢)d(y’ o ¢)
If we want to use the definition, consider that a basis for Q!(R?) is given

by dz,dy,dz. Following a standard convention, we denote for convenience
8% = J,. Thus we have

¢*()(0z) = a(dp(0z)) = a(By + ydu) = €¥ +yv =™ + (x4 2)y
F(@)0,) = aldd(d,) = alzd) = v = (v + )z
¢*(a)(0:) = a(dp(9:)) = a(dy) = e = €™

Thus we obtain

Pfa=eY+ (x+2)ydr + (z+ 2)zdy + e dz
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(¢) To compute ¢*f we use the other (perhaps more direct) method. It uses the
following important property of the pull-back:

¢*(fl@)dz! A~ Ada?) = (Fo)d(atog) A Ad(a 0 9)
Thus we have
9" (B) = ¢"(v dvAdw)
v(¢) d(v(9)) A d(w(e))
= (z+2)(dz+dz) A (ydx + zdy)
= (x+2)(zdxAdy —ydx Adz —zdy Adz)
(d) The property ¢*(a) A ¢*(B) = ¢*(a A 5) implies that this is a null form.

O
Exercise 13.5.*% Compute the exterior derivative of the following forms:
(a) on RR?\ {0}, 6 = 24y,
Solution. Applying the definition of exterior derivative yields
2,2 2,2
z -y —z°+y 7 -y
dd =d| —— |Ndy+d | —— |Adz = —5——== deAdy———F=5 dyAndz =0
<x2 +y2> a <x2 +y2> T YTy
0

(b) on R3, ¢ = cos(x) dy A dz.

Solution. dp = d(cos(x)) Ady Adz = —sin(z) dz A dy A dz. O
(c) on R3, w= Adx + Bdy + Cdz, where A, B,C € C*(R?).

Solution. The differential of w is

dw=dAANdzx+dBAdy+dC Adz

A A A B
<8d +8—d +8d>/\dx—|—<8d —|—a—d ~|—6dz>/\dy

ox oy 0 ox oy 15)
oC oC oC
+<8d —l—a—d —i—adz>/\dz
oC OB 0A 0C 0B 0A
_<(‘3y_(92’) dy Adz + ((‘3,2_896) dz Adz + (m—ay>dx/\dy.

Remark: Notice the resemblance of dw with the curl of a vector field in
R3. Recall that if F = (A4, B,C) is a vector field in R? then

curl FF = (Cy — B;, A, — Cy, B, — Ay)

One can identify 2-forms with vector fields by sending any 2-form pdy A dz +
gdz Adz + rdz A dy to the vector field (p,q, ). O



