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Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable n-

manifold and let ω, η be two continuous, compactly supported n-forms on M . Prove

the following:

(a) Linearity: If a, b ∈ R, then∫
M
(aω + b η) = a

∫
M

ω + b

∫
M

η.

Solution. First case: The manifold M is an open subset U of Rn, with the

standard orientation. Then we may write

ω = hdx0 ∧ · · · ∧ dxn−1

η = g dx0 ∧ · · · ∧ dxn−1

and we have aω + b η = (a h+ b g) dx0 ∧ · · · ∧ dxn−1, therefore∫
M
(aω + b η) =

∫
U
(a h+ b g) = a

∫
U
h+ b

∫
M

g = a

∫
M

ω + b

∫
M

η

where the integrals over U are Riemann integrals.

Second case: M is a general manifold, but the supports of ω and η are

contained in the image φ(U) of a single parametrization φ : U → M that has

constant sign sgnφ = ±1. Then supp(aω + b η) ⊆ suppω ∪ supp η ⊆ φ(U),

and we have∫
M
(aω + b η) = sgnφ ·

∫
U
φ∗(aω + b η)

= sgnφ ·
∫
U
(aφ∗ω + b φ∗η)

= a sgnφ ·
∫
U
φ∗ω + b sgnφ ·

∫
U
φ∗η = a

∫
M

ω + b

∫
M

η

General case: We use a family of local parametrizations (Ui, φi) whose im-

ages φi(Ui) cover suppω and supp η, and a partition of unity (χi)i subordinate

to the open cover (Ui)i of the set
⋃

i φi(Ui). Then by definition of
∫
M we have∫

M
(aω + b η) =

∑
i

∫
M

χi(aω + b η)

=
∑
i

∫
M
(aχi ω + b χi η).

Since the forms χi ω and χi η have their support contained in φi(Ui), by the

previous case the last integral is equal to

=
∑
i

(
a

∫
M

χi ω + b

∫
M

χi η

)
= a

∑
i

∫
M

χi ω + b
∑
i

∫
M

χi η

= a

∫
M

ω + b

∫
η.

□

(b) Positivity: If sgn(ω|p) coincides with the orientation of M at every point

p ∈ M where ω|p ̸= 0, then
∫
M ω ≥ 0, and the inequality is strict unless ω is

identically zero.
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Solution. First case: Let M be an open set U ⊆ Rn, with the standard

orientation. In this case we can write ω = hdx0 ∧ · · · ∧ dxn−1 for some

continuous function h : U → R, and we have sgn(ωp) = sgnh(p) for any point

p ∈ U , because dx0∧· · ·∧dxn−1 is a positive n-form. Therefore the condition

that sgn(ωp) coincides with the orientation of M for all points p ∈ U where

ωp ̸= 0 is equivalent to the condition that h(p) ≥ 0 for all p ∈ U .

Thus we have
∫
M ω =

∫
U h ≥ 0, and the inequality is strict unless h ≡ 0,

which means ω ≡ 0.

Second case: Suppose suppω ⊆ U for some local parametrization φ : Ũ →
U that has constant sign sgnφ = ±1. For a point p = φ(p̃) where ωp ̸= 0, we

have

sgn((φ∗ω)|p) = sgnφ · sgn(ω|p)︸ ︷︷ ︸
=+1

,

which implies that sgn(φ∗ω)|p = sgnφ. Therefore∫
M

ω = sgnφ

∫
Ũ
φ∗ω ≥ 0

and the equality holds if and only if φ∗ω ≡ 0, iff ω ≡ 0.

General case: We use a family of local parametrizations (Ui, φi) whose

images φi(Ui) cover suppω and supp η, and a partition of unity (χi)i subor-

dinate to the open cover (Ui)i of the set
⋃

i φi(Ui). Since χi ≥ 0, we have

sgn(χiω) ≥ 0, and therefore
∫
M ω =

∑
i

∫
M χiω ≥ 0 with equality iff χiω = 0

for all i, iff ω ≡ 0. □

(c) Diffeomorphism invariance: If f : N → M is an diffeomorphism of constant

sign sgn(f) = ±1 (i.e. f is either orientation preserving or orientation revers-

ing), then ∫
N
f∗ω = sgn f ·

∫
M

ω.

Solution. Suppose supp(f∗ω) ⊆ φ(Ũ) for some local parametrization φ : Ũ →
N . Then f ◦ φ is a local parametrization of M such that suppω ⊆ f(φ(U)),

and we have∫
N
f∗ω =

∫
Ũ
φ∗(f∗ω) =

∫
Ũ
(f ◦ φ)∗ω =

∫
M

ω.

In the general case, the result is deduced easily using partitions unity. □

(d) Orientation reversal: If −M denotes M with the reversed orientation, then∫
−M

ω = −
∫
M

ω.

Solution. Let O be the orientation of M , so that −O is the orientation of

−M . Here the most important case is when supp(ω) ⊆ φ(Ũ) for some local

parametrization φ : Ũ → M . In the formula∫
M

ω := sgnO φ ·
∫
Ũ
φ∗ω,

if we reverse the orientation of M , then the sign of φ is also reversed:∫
−M

ω = sgn−O φ ·
∫
Ũ
φ∗ω = − sgnO φ ·

∫
Ũ
φ∗ω = −

∫
M

ω.

In the general case, the result is deduced easily using partitions unity. □

Exercise 13.2. Prove that a continuous k-form is determined by the value of its

integrals (Proposition 7.3.12).

Hint: Use a chart to move the problem to Rn, then integrate on small pieces of coordinate planes.
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Solution. Suppose that our manifold is an open set U ⊆ Rn (considered as a C1

manifold) and ω ∈ Ωk(U) is a continuous k-form. We write ω =
∑

I∈nk
↗
ωI dx

I . Let

p ∈ U and I = (i0, . . . , ik−1) ∈ nk an increasing k-index. We want to show that ωI(p)

is determined by values of k-dimensional integrals of ω.

Let ι = ιp,I : Rk → Rn : y 7→ x where

xi =

{
ys if i = is for some s ∈ k

pi otherwise.

We restrict ι to the open set V = ι−1U and note that the point p̃ = ι−1(p) =

(pis)s∈k ⊆ Rk is contained in V .

The pullback by ι of ω is the continuous k-form ι∗ω = hdy0∧ · · ·∧dyk−1 ∈ Ωk(V ),

where h = ωI ◦ ι ∈ C(V,R).
Denote Dp̃,ε ⊆ Rk be the closed ball of center p̃ and radius ε > 0 in Rk, and let

|Dp̃,ε| be the volume of this ball. We take ε small enough so that Dp̃,ε ⊆ V . Then

1

|Dp̃,ε|

∫
Dp̃,ε

ι∗ω =
1

|Dp̃,ε|

∫
Dp̃,ε

h = (average value of h on Dp̃,ε)
ε→0−→ h(p̃) = ωI(p).

This means that we can find out the value of ωI(p) if we know the value of the integral∫
Dp̃,ε

ι∗p,Iω for every ε > 0. Doing this for each increasing k-index I ∈ nk
↗, we find

out the value of ω|p at the point p ∈ U . Thus any continuous k-form ω ∈ Ωk(U) is

determined by the value of its integrals of the form
∫
Dp̃,ε

ι∗p,εω.

If M is a general C1 manifold and ω ∈ Ωk(M) is a continuous k-form, we use a local

parametrization φ : U → M to get a k-form φ∗ω ∈ Ωk(U), and then as explained

above we can determine this k-form if we know the value of the integrals of the kind∫
Dp̃,ε

ι∗p,I(φ
∗ω) =

∫
Dp̃,ε

(φ ◦ ιp,I)∗ω

But knowing φ∗ω is equivalent to knowing ω|φ(U), thus using different parametriza-

tions (U,φ) we can know ω at all points of M . □

Exercise 13.3.* Let f : M → N be a smooth map between smooth manifolds. Then

for all ω ∈ Ωk(M) we have

f∗(dω) = d(f∗ω).

Exercise 13.4.* Let (x, y, z) be the standard coordinates on R3 and let (v, w) be the

standard coordinates on R2. Let ϕ : R3 → R2 be defined as ϕ(x, y, z) = (x + z, xy).

Let α = ew dv + v dw and β = v dv ∧ dw be 2-forms on R2. Compute the following

differential forms:

α ∧ β, ϕ∗(α), ϕ∗(β), ϕ∗(α) ∧ ϕ∗(β).

Solution. (a) Since Ω3(R2) is just the zero form, whatever α and β are, α∧β = 0

(b) We can either use the definition of ϕ∗(α) to compute the components of this

1-form, or the property that, in local coordinates,

ϕ∗(αI dy
I) = (αI ◦ ϕ) d(yI ◦ ϕ)

If we want to use the definition, consider that a basis for Ω1(R3) is given

by dx,dy,dz. Following a standard convention, we denote for convenience
∂
∂x = ∂x. Thus we have

ϕ∗(α)(∂x) = α(dϕ(∂x)) = α(∂v + y∂w) = ew + yv = exy + (x+ z)y

ϕ∗(α)(∂y) = α(dϕ(∂y)) = α(x∂w) = xv = (x+ z)x

ϕ∗(α)(∂z) = α(dϕ(∂z)) = α(∂v) = ew = exy

Thus we obtain

ϕ∗α = exy + (x+ z)y dx+ (x+ z)x dy + exy dz
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(c) To compute ϕ∗β we use the other (perhaps more direct) method. It uses the

following important property of the pull-back:

ϕ∗(f(x) dx1 ∧ · · · ∧ dxk) = (f ◦ ϕ) d(x1 ◦ ϕ) ∧ · · · ∧ d(xk ◦ ϕ)

Thus we have

ϕ∗(β) = ϕ∗(v dv ∧ dw)

= v(ϕ) d(v(ϕ)) ∧ d(w(ϕ))

= (x+ z)(dx+ dz) ∧ (y dx+ x dy)

= (x+ z)(x dx ∧ dy − y dx ∧ dz − x dy ∧ dz)

(d) The property ϕ∗(α) ∧ ϕ∗(β) = ϕ∗(α ∧ β) implies that this is a null form.

□

Exercise 13.5.* Compute the exterior derivative of the following forms:

(a) on RR2 \ {0}, θ = xdy−y dx
x2+y2

.

Solution. Applying the definition of exterior derivative yields

dθ = d

(
x

x2 + y2

)
∧dy+d

(
−y

x2 + y2

)
∧dx =

−x2 + y2

(x2 + y2)2
dx∧dy− x2 − y2

(x2 + y2)2
dy∧dx = 0

□

(b) on R3, φ = cos(x) dy ∧ dz.

Solution. dφ = d(cos(x)) ∧ dy ∧ dz = − sin(x) dx ∧ dy ∧ dz. □

(c) on R3, ω = Adx+B dy + C dz, where A,B,C ∈ C∞(R3).

Solution. The differential of ω is

dω =dA ∧ dx+ dB ∧ dy + dC ∧ dz

=

(
∂A

∂x
dx+

∂A

∂y
dy +

∂A

∂z
dz

)
∧ dx+

(
∂B

∂x
dx+

∂B

∂y
dy +

∂B

∂z
dz

)
∧ dy

+

(
∂C

∂x
dx+

∂C

∂y
dy +

∂C

∂z
dz

)
∧ dz

=

(
∂C

∂y
− ∂B

∂z

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx+

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy.

Remark: Notice the resemblance of dω with the curl of a vector field in

R3. Recall that if F = (A,B,C) is a vector field in R3 then

curlF = (Cy −Bz, Az − Cx, Bx −Ay)

One can identify 2-forms with vector fields by sending any 2-form p dy ∧ dz+

q dz ∧ dx+ r dx ∧ dy to the vector field (p, q, r). □
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