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Exercise 12.1. Let F : R2 → R3 be the smooth map

F (θ, φ) = ((cosφ+ 2) cos θ, (cosφ+ 2) sin θ, sinφ).

Consider ω = y dz∧dx. Compute dω and F ∗ω and verify by direct computation that

d(F ∗ω) = F ∗ dω.

Solution. We first note that dω = dy ∧ dz ∧ dx. To obtain F ∗ω we compute first

F ∗(dz) = d sinφ = cosφdφ

and then

F ∗(dx) = d((cosφ+ 2) cos θ)

= − sinφ cos θ dφ− (cosφ+ 2) sin θ dθ

Putting everything together, we get

F ∗ω = (cosφ+ 2) sin θ cosφdφ ∧ (− sinφ cos θ dφ− (cosφ+ 2) sin θ dθ)

= −(cosφ+ 2)2 (sin θ)2 dφ ∧ dθ.

The forms d(F ∗ω) and F ∗(dω) are both zero because they are 3-forms on R2. □

Exercise 12.2. Prove that given ω ∈ Ωk(Rn) a k-form the Exterior derivative dω =

d(
∑

I ωI dx
I) :=

∑
I dωI ∧ dxI has the following properties:

(a) d is R-linear

Solution. This one is easy. □

(b) d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη

Solution. Let a = degω and b = deg η. The form ω can be expressed in

standard form as ω =
∑

I ωI dxI , where the sum ranges over all increasing

multiindices I = (i0, . . . , ia−1). Similarly, we have η =
∑

J ηJ dxJ for increas-

ing multiindices J = (j0, . . . , jb−1). Hence we can write

ω ∧ η =

(∑
I

ωI dxI

)
∧

(∑
J

ηJ dxJ

)
=
∑
I,J

ωI ηJ dxI ∧ dxJ

and we note that dxI ∧dxJ is equal to ±dxK (for some K) if the multiindices

I and J have no common values, and vanishes otherwise. This means that the

the form ω∧η is already expressed in standard form, so its exterior derivative
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can be computed as usual:

d(ω ∧ η) = d

∑
I,J

ωI ηJ dxI ∧ dxJ


=
∑
I,J

d(ωI ηJ) ∧ dxI ∧ dxJ)

=
∑
I,J

(ηJ dωI + ωI dηJ) ∧ dxI ∧ dxJ

=
∑
I,J

ηJ dωI ∧ dxI ∧ dxJ +
∑
I,J

ωI dηJ ∧ dxI ∧ dxJ

=
∑
I,J

ηJ dωI ∧ dxI ∧ dxJ + (−1)b
∑
I,J

ωI dxI ∧ dηJ ∧ dxJ

=

(∑
I

dωI ∧ dxI

)
∧

(∑
J

ηJ dx
J

)
+ (−1)b

(∑
I

ωI dxI

)
∧

(∑
J

dηJ ∧ dxJ

)
= dω ∧ η + (−1)bω ∧ dη

□

(c) d ◦ d = 0

Solution. Take any a form ω and write ω =
∑

I ωI dxI , for increasing multi-

indices I = (i0, . . . , ia−1). Then we can compute

d(dω) = d

(
d

(∑
I

ωI dxI

))

= d

(∑
I

dωI ∧ dxI

)

= d

∑
I

∑
j

∂ωI

∂xj
dxj ∧ dxI


=
∑
I

∑
j

d
∂ωI

∂xj
∧ dxj ∧ dxI

=
∑
I

∑
j

∑
k

∂2ωI

∂xj ∂xk
dxk ∧ dxj ∧ dxI

Now, we can see that the factor
∑

j

∑
k

∂2ωI

∂xj ∂xk dxk∧dxj vanishes because the

wedge product dxk∧dxj is antisymmetric, while the partial derivative ∂2ωI

∂xj ∂xk

is symmetric. We conclude that d(dω) = 0. □

(d) Given F : U → V a smooth map, d(F ∗ω) = F ∗ dω.

Solution. Let ω ∈ Ωp(M) be a smooth p-form on a manifold M . Let us show

that for any smooth map F : N →M we have the identity d(F ∗ω) = F ∗(dω).

To show that the identity holds at some point p ∈ N , we take a chart (U,φ)

of M that covers the point F (p). Over the set U , the form ω can be written

as

ω =
∑

i0<···<ip−1

ωi0,...,ip−1 dφ
i0 ∧ . . . ∧ dφip−1
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Then on the set F−1(U) we have

F ∗ω =
∑

i0<···<ip−1

F ∗ωi0,...,ip−1F
∗(dφi0) ∧ . . . ∧ F ∗(dφip−1)

=
∑

i0<···<ip−1

F ∗ωi0,...,ip−1 d(F
∗φi0) ∧ . . . ∧ d(F ∗φip−1)

Here we have used the fact that the pullback operator commutes with sums

and wedge products (which follows easily from the definitions) and the identity

F ∗(dh) = d(F ∗h) for the case that h ∈ C∞(M) (which is equivalent to the

chain rule for the composite function h ◦ F ). Using these same facts we can

finish the computation as follows. Applying the differential operator, we get

d(F ∗ω) =
∑

i0<···<ip−1

d(F ∗ωi0,...,ip−1) ∧ d(F ∗φi0) ∧ . . . ∧ d(F ∗φip−1)

( there are no more terms since d d(F ∗φi) = 0 for all i)

=
∑

i0<···<ip−1

F ∗(dωi0,...,ip−1) ∧ F ∗(dφi0) ∧ . . . ∧ F ∗(dφip−1)

= F ∗

 ∑
i0<···<ip−1

dωi0,...,ip−1 ∧ dφi0 ∧ . . . ∧ dφip−1


= F ∗(dω).

This shows that the identity d(F ∗ω) = F ∗(dω) holds on the set F−1(U), and

in particular, at the point p. Since the point p ∈ N is arbitrary, we conclude

that the identity holds on the whole manifold N . □

Exercise 12.3. Suppose that M is a smooth manifold which is the union of two

orientable open sub-manifolds with connected intersection. Show that then M is

orientable. Use this to prove that Sn is orientable.

Solution. Let M = U0 ∪ U1, where both sets Ui are open an orientable, and the

intersection U0 ∩ U1 is connected. Let us show that M is orientable as well. Let O0,

O1 be respective orientations of the submanifolds U0, U1. By reversing the sign of

O1 if necessary, we can ensure that both orientation fields Oi coincide at some point

of the set U0∩U1, and it follows that they coincide at all points the set U0∩U1, since

this set is open and connected. Thus we can define an orientation field O on M by

the formula

Oq =

{
O0

q if q ∈ U0

O1
q if q ∈ U1

and it is clear that this orientation field is continuous on M since it is continuous on

each of the sets Ui. Therefore O is an orientation on M , which proves that M is an

orientable manifold.

For the case of the sphere Sn (for n ≥ 2), denoting P0 and P1 the north and south

poles, the stereographic charts show that each open set Ui = Sn \ Pi is diffeomorphic

to Rn and therefore orientable. The intersection U0 ∩ U1 is connected. (In fact, it is

homotopically equivalent to the Equator, which is an (n−1)-sphere. Here we use the

fact that n ≥ 2.) Thus by the theorem above, the sphere Sn is orientable.

To show that S1 is orientable we use the fact that the n-torus Tn is orientable for

all n.

Another way to show that Sn is orientable is by proving the following theorem: IfM

is an orientable manifold, then any regular level set h−1(c) of a function h ∈ C∞(M)

is an orientable hypersurface. Another (similar) theorem says that an embedded

hypersurface of an orientable manifold is orientable if (and only if!) it admits a

transverse vector field. □
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Exercise 12.4. * Let M a smooth manifold. Show that TM and T∗M are always

orientable manifolds.

Solution. We will just show that TM is orientable. (The case of T∗M can be treated

similarly.) We first recall the natural smooth structure of the manifold TM . Denote

π : TM →M the natural projection that maps each (p, v) ∈ TM to the point p ∈M .

Local parametrizations of TM : For each smooth local parametrization φ : Ũ → U

of M (where Ũ ⊆ Rn, U ⊆ M are open sets) we define a local parametrization

Φ : Ũ × Rn → π−1(U) of TM by the formula

Φ(x, v) = (φ(x), Dxφ(v)).

The local parametrizations obtained in this way form a smooth parametrization atlas

for TM .

Transition maps: Suppose ψ : Ṽ → V is another local parametrization of M and

Ψ : Ṽ ×Rn → π−1(V ) is the corresponding local parametrization of TM , defined by

the formula Ψ(y, w) = (ψ(y), Dyψ(w)). Then the transition map from Φ to Ψ is the

map Ψ−1 ◦ Φ : φ−1(U ∩ V )× Rn → ψ−1(U ∩ V )× Rn given by

Ψ−1 ◦ Φ(x, v) = (ψ−1 ◦ φ(x), Dx(ψ
−1 ◦ φ)(v)) =: (y, w).

Now let us show that TM is orientable. We claim that there exists an orientation

of the manifold TM such that the local parametrizations of TM defined above are

positive (i.e orientation preserving). For this, it suffices to show that for any pair of

local parametrizations Φ, Ψ as defined above, the differential D(x,v)(Ψ
−1 ◦ Φ) of the

transition map at any point (x, v) ∈ Dom(Ψ−1 ◦ Φ) = φ−1(U ∩ V )× Rn has positive

determinant. (See Proposition 7.1.8 of the lecture notes.)

The differential D(x,v)(Ψ
−1◦Φ) is represented in standard coordinates by a 2n×2n

matrix

[D(x,v)(Ψ
−1 ◦ Φ)] =


(
∂yj

∂xi

)
i,j

(
∂yj

∂vi

)
i,j(

∂wj

∂xi

)
i,j

(
∂wj

∂vi

)
i,j

 =

(
[ Dx(ψ

−1 ◦ φ)] 0

∗ [ Dx(ψ
−1 ◦ φ)]

)
,

which has positive determinant

det[D(x,v)(Ψ
−1 ◦ Φ)] = (det[Dx(ψ

−1 ◦ φ)])2 > 0,

as needed. □

Recall that a smooth covering map π : E → M is a smooth surjective morphism

such that for each p ∈M there exists a open neighbourhood U in M with π−1(U) =∐k
i=1 Vi with π|Vi : Vi → U is a diffeomorphism.

The following two results explain how orientations behave with respect to smooth

covering maps and give us criteria to show when a manifold is not orientable.

Theorem Let E be a connected, oriented, smooth manifold and π : E → M be

a smooth normal covering map. 1 Then M is orientable if and only if the action of

Autπ(E) is orientation preserving

Exercise 12.5. * Using the above theorem, prove that RPn is orientable if and only

if n is odd.

Hint: Consider q : Sn → RPn the quotient map. Prove that this is a normal smooth covering

map. Then prove that the only non trivial automorphism of q is the antipodal map x 7→ −x which

is orientation preserving if and only if n is odd.

1For us normal will just means that the group Autπ(E) of automorphism of E commuting with

π acts transitively on the fiber.
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Solution. Let A : x 7→ −x be the antipodal map on Rn+1. This map is linear and

represented by the identity matrix −In+1, which has determinant (−1)n+1. Therefore

the map A preserves the (standard) orientation of Rn+1 if and only if n is odd.

Now we must show that the antipodal map resticted to the sphere Sn, which we

denote by α : Sn → Sn, behaves in a similar way: it preserves the orientation of the

sphere if and only if n is odd. For this we use the following orientation O of the

sphere: for any point p ∈ Sn and any basis V0, . . . , Vn−1 of Tp(Sn) ⊆ Rn+1, we have

Op(V0, . . . , Vn−1) = Ostd(p, V0, . . . , Vn−1)

where Ostd is the standard orientation of Rn+1. This orientation field O is continuous

since it can be written as

Ostd(p, V0, . . . , Vn−1) = sgn det(p, V0, . . . , Vn−1),

thus if we take a chart (U,φ) of Sn, we see that the function

p 7→ Op

(
∂

∂φ0

∣∣∣∣
p

, . . . ,
∂

∂φn−1

∣∣∣∣
p

)
= Ostd

(
p,

∂

∂φ0

∣∣∣∣
p

, . . . ,
∂

∂φn−1

∣∣∣∣
p

)

= sgn det

(
p,

∂

∂φ0

∣∣∣∣
p

, . . . ,
∂

∂φn−1

∣∣∣∣
p

)
= ±1

is locally constant on U .

Now let us show that α preserves the orientation O if and only if n is odd. For any

point p ∈ Sn and vectors Vi ∈ TpSn as above, we have

Oα(p)(Dpα(V0), . . . , Dpα(Vn−1) = Ostd(α(p), Dpα(V0), . . . , Dpα(Vn−1))

= Ostd(−p,−V0, . . . ,−Vn−1)

= (−1)n+1Ostd(p, V0, . . . , Vn−1)

= (−1)n+1Op(V0, . . . , Vn−1)

= Op(V0, . . . , Vn−1) if and only if n is odd.

To finish, we apply the theorem mentioned above to the covering map π : Sn →
RPn. The manifold Sn is connected and oriented. The automorphism group of the

covering map π is {idSn , α}, and it is normal since it acts transitively on the fibers,

which are of the form {p,−p} for p ∈ Sn. The identity map clearly preserves the

orientation, and the map α does if and only if n is odd. Therefore, by the above

theorem, the projective space RPn is orientable if and only if n is odd. □
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