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Problem 1. (Canonical Correlations)

[10pts] Let X and Y be zero-mean real-valued random vectors with covariance matrices RX

and RY, respectively. Moreover, let RXY = E[XYT ]. Our goal is to find vectors u and v

such as to maximize the correlation between uTX and vTY, that is,

max
u,v

E[uTXYTv]√
E[|uTX|2]

√
E[|vTY|2]

. (1)

Show how we can find the optimizing choices of the vectors u and v from the problem

parameters RX, RY, and RXY.

Hint: Recall that we have seen in class that

max
v

‖Av‖
‖v‖

= max
‖v‖=1

‖Av‖ = σ1(A), (2)

where σ1(A) denotes the maximum singular value of the matrix A. The corresponding max-

imizer is the right singular vector v1 (i.e., eigenvector of ATA) corresponding to σ1(A).

Solution: Observe that

E[uTXYTv] = uTRXYv (3)

E[|uTX|2] = uTRXu (4)

E[|vTY|2] = vTRYv (5)

(6)

So, we can express our problem as

max
u,v

uTRXYv√
uTRXu

√
vTRYv

(7)

Changing coordinates as a = R
1/2
X u and b = R

1/2
Y v, we obtain

max
a,b

aT
(
R
−1/2
X

)T
RXYR

−1/2
Y b

‖a‖‖b‖
, (8)

and since R
−1/2
X is a symmetric matrix,

max
a,b

aTR
−1/2
X RXYR

−1/2
Y b

‖a‖‖b‖
. (9)

Note that this expression is invariant to scaling of the vectors a and b. Hence, equivalently,

max
‖a‖=‖b‖=1

aTR
−1/2
X RXYR

−1/2
Y b. (10)
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For a fixed choice of a, this is the inner product of the fixed vector
(
R
−1/2
X RXYR

−1/2
Y

)T
a

with the vector b. We can argue for example via Cauchy-Schwarz that the maximizing choice

of b is exactly equal to that fixed vector (normalized), that is,

b =

(
R
−1/2
X RXYR

−1/2
Y

)T
a∥∥∥∥(R−1/2

X RXYR
−1/2
Y

)T
a

∥∥∥∥ . (11)

Plugging this in, we find

max
‖a‖=1

aTR
−1/2
X RXYR

−1/2
Y

(
R
−1/2
X RXYR

−1/2
Y

)T
a∥∥∥∥(R−1/2

X RXYR
−1/2
Y

)T
a

∥∥∥∥ , (12)

or, equivalently,

max
‖a‖=1

∥∥∥∥(R−1/2
X RXYR

−1/2
Y

)T
a

∥∥∥∥ , (13)

or perhaps better

max
‖a‖=1

∥∥∥R−1/2
Y RT

XYR
−1/2
X a

∥∥∥ , (14)

Grading Notes:

• Correctly remove the expectations and express in terms of the covariance matrices: 2 Pts

• Express in eigenbasis: +1 Pt

• Idea of treating uTRXYv as an inner product and upper bounding by Cauchy-Schwarz: 6 Pt.
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Problem 2. (Growth of Expected Capital vs Expected Growth of Capital)

Suppose U1, U2, . . . are i.i.d. random variables taking values on a finite alphabet U ; let

P (u) = Pr(U1 = u) denote their common distribution. As in class let P̂n denote the empirical

distribution of Un.

Suppose f : U → [0,∞) is a non-negative real valued function defined on U . Define now the

random variables X0, X1, . . . as X0 = 1, Xn = f(Un)Xn−1, ∀n ≥ 1. In other words

Xn =
n∏
i=1

f(Ui).

One refers to the value Rn = 1
n

logXn as the (exponential) rate of growth of Xn. (The

terminology is motivated by the relationship Xn = exp(nRn)).

Fix α =
∑

u P (u) log f(u) = E[log f(U)], and for a given ε > 0, let

A =
{
Q ∈ Π :

∣∣∑
uQ(u) log f(u)− α

∣∣ < ε
}
.

Let D∗ = minQ 6∈AD(Q‖P ). Observe that D∗ > 0.

(a) [5pts] What can you say about Pr(|Rn − α| ≥ ε) as n gets large? Hint: How are the

events {|Rn − α| ≥ ε} and {P̂n 6∈ A} related?

(b) [5pts] Let β = logE[f(U)]. What is the relationship between en = 1
n

logE[Xn] and β?

Which one of α and β is larger?

In a casino a game of chance is played. The outcome of the game is a random variable U ,

and if the outcome is u, the money bet on that outcome is multipled by a factor φ(u). The

money bet on other outcomes is lost. The game can be played successively with independent,

identically distributed outcomes.

We allocate our capital among the outcomes by placing a fraction q(u) of it on outcome u.

Clearly q(u) ≥ 0 and Q =
∑

u q(u) ≤ 1. (The fraction 1 − Q is the fraction of our capital

not bet on the game and kept in reserve.) Observe that f(u) = (1 − Q) + q(u)φ(u) is the

factor our capital is multipled by if the outcome of the game is u.

Let X0 = 1 be our initial capital, and let Xn, n = 1, 2, . . . denote our capital as we play the

game repeatedly with a fixed allocation strategy q.

(c) [5pts] Suppose U = {0, 1}, P (0) = 1/4, P (1) = 3/4, φ(0) = φ(1) = 2. What is the

allocation q that maximizes the value of β in (b)?

(d) [5pts] Continuing with (c) and the allocation you just found, what is the value of α?

What will happen to our capital Xn in the long run if we repeatedly play the game?
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Solution:

(a) As Rn = 1
n

logXn and Xn = Πn
i=1f(Ui), we have

Rn =
1

n
log Πn

i=1f(Ui) =
1

n

n∑
i=1

log f(Ui) =
∑
u

P̂n(u) log f(u) (15)

Thus, the event {|Rn − α| ≥ ε} is the same as {P̂n 6∈ A}, which means Pr(|Rn − α| ≥
ε) = Pr(P̂n 6∈ A).

Let B denote the complement set of A, then B =
{
Q ∈ Π :

∣∣∑
uQ(u) log f(u)−α

∣∣ ≥ ε
}

which is a closed set. Thus we have Pr(P̂n 6∈ A) = Pr(P̂n ∈ B). Moreover, the closure

of B is equal to the closure of the interior of B. According to Theorem 2.13 in the

lecture notes, we have

lim
n→∞

1

n
log Pr(P̂n ∈ B) = − inf

Q∈B
D(Q‖P ) = −min

Q∈B
D(Q‖P ) = −D∗. (16)

As D∗ > 0, the probability Pr(P̂n ∈ B) must converge to 0 as n goes to infinity.

Therefore, we have Pr(|Rn − α| ≥ ε) goes to 0 as n gets large.

(b) As Xn = Πn
i=1f(Ui) and Ui, . . . , Un are i.i.d, we have

en =
1

n
logE[Xn] =

1

n
logE[Πn

i=1f(Ui)] =
1

n

n∑
i=1

logE[f(Ui)] = logE(f(U)) (17)

Hence, en = β for all n.

By Jensen’s inequality we have

β = logE[f(U)] ≥ E[log f(U)] = α. (18)

(c) Since f(u) = (1−Q) + q(u)φ(u) and Q =
∑

u q(u), we have

arg max
q(0),q(1)

β = arg max
q(0),q(1)

E[f(U)] (19)

= arg max
q(0),q(1)

P (0)f(0) + p(1)f(1) (20)

= arg max
q(0),q(1)

P (0)(1−Q+ q(0)φ(0)) + P (1)(1−Q+ q(1)φ(1)) (21)

= arg max
q(0),q(1)

1−Q+ P (0)q(0)φ(0) + P (1)q(1)φ(1) (22)

= arg max
q(0),q(1)

(P (0)φ(0)− 1︸ ︷︷ ︸
<0

)q(0) + (P (1)φ(1)− 1︸ ︷︷ ︸
>0

)q(1) (23)

It is obvious that {q(0) = 0, q(1) = 1} maximizes β.
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(d) With the strategy in (c), we have f(0) = 0 and f(1) = 2. Hence,

α = E[logU ] = P (0) log f(0) + P (1) log f(1) = −∞ (24)

The probability that we lose all money is actually goes to 1 as we repeatedly play the

game.

Pr(Xn = 0) = 1− Pr(Xn 6= 0) = 1− (3/4)n → 1. (25)

In other words, the strategy of maximizing E[Xn] will surely ruin us in the long term.

A more reasonable strategy would be to maximize α, which can be found to be {q(0) =

1/4, q(1) = 3/4}. It is easy to show that q=P maximizes alpha in general. This choice

of q is known in portfolio theory as Kelly betting.
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Problem 3. (Hypothesis Testing and Exponential Families)

Let P denote the zero-mean and unit-variance Gaussian distribution. Assume that you are

given N iid samples distributed according to P and let P̂N be the empirical distribution.

Let Π denote the set of distributions with second moment E[X2] = 2. We are interested in

lim
N→∞

1

N
log Pr{P̂N ∈ Π} = − inf

Q∈Π
D(Q‖P ).

1. [10pts] Determine −arginfQ∈ΠD(Q‖P ), i.e., determine the element Q for which the

infinum is taken on.

2. [5pts] Determine − infQ∈ΠD(Q‖P ).

Solution: We are looking for the I-projection of P onto Π, call the result Q. Since Π is a

linear family with a single constraint on the expected value of x2 we know that the density

of the minimizing distribution has the form

q(x) = p(x)eθx
2−A(θ).

If we insert p(x) = 1√
2π
e−

x2

2 this gives us

q(x) = e−
x2

2
+θx2−Ã(θ).

We recognize the right-hand side to be the density of a zero-mean Gaussian distribution and

by assumption this distribution has second moment 2. Hence, the solution is a zero-mean

Gaussian distribution with variance 2, i.e., q(x) = 1√
4π
e−

x2

4 . The asymptotic exponent is

given by the KL distance between these two distributions. We have

D(q‖p) =

∫
1√
4π
e−

x2

4 log

1√
4π
e−

x2

4

1√
2π
e−

x2

2

dx

=
1

2
log

1

2
+

∫
1√
4π
e−

x2

4 [−x
2

4
+
x2

2
]dx

=
1

2
(log

1

2
+ 1) =

1

2
(− log 2 + 1) ∼ 0.153426.

Alternatively, we can use the formula in problem 1 of homework 5 to compute D(q‖p).

To summarize

1. −arginfQ∈ΠD(Q‖P ) is given by q(x) = 1√
4π
e−

x2

4 .

2. − infQ∈ΠD(Q‖P ) = −0.153426.
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Grading Notes:

• Correct expression for p(x): 2 pts.

• Realize it is I-projection 2 pts. Know that q(x) is p(x)× exponential family: 2 pts.

• Find q(x) is zero-mean Gaussian with variance equal 2: 3 pts.

• Correct formula for divergence 3 pts. Correct answer 2 pts.
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Problem 4. (Choose the Shortest Description)

Suppose C0 : U → {0, 1}∗ and C1 : U → {0, 1}∗ are two prefix-free codes for the alphabet U .

Consider the code C : U → {0, 1}∗ defined by

C(u) =

{
0C0(u) if lengthC0(u) ≤ lengthC1(u)

1C1(u) else.

Observe that length(C(u)) = 1 + min{length(C0(u)), length(C1(u))}.

(a) [5pts] Is C a prefix-free code? Explain.

(b) [5pts] Suppose C0, . . . , CK−1 are K prefix-free codes for the alphabet U . Show that

there is a prefix-free code C with

length(C(u)) = dlog2Ke+ min
0≤k<K−1

length(Ck(u)).

(c) [5pts] Suppose we are told that U is a random variable taking values in U , and we are

also told that the distribution p of U is one of K distributions p0, . . . , pK−1, but we do

not know which. Using (b) describe how to construct a prefix-free code C such that

E[length(C(U))] ≤ dlog2Ke+ 1 +H(U).

[Hint: From class we know that for each k there is a prefix-free code Ck that descibes

each letter u with at most d− log2 pk(u)e bits.]

Solution:

(a) Yes, C is a prefix-free code. We can prove it by contradiction. Suppose there exist

u, v ∈ U such that C(u) is a prefix of C(v). Then they must start with the same bit.

Without loss of generality, let us assume they start with 0, then we have C(u) = 0C0(u)

is a prefix of C(v) = 0C0(v). This requires C0(u) is a prefix of C0(v) which contradicts

to C0 is prefix free code.

(b) Generalizing the given construction, we can construct the code C(u) for any u ∈ U as

follows.

C(u) = Bin(i∗)Ci∗(u) (26)

where i∗ = arg min0≤k≤K−1} lengthCi(u) and Bin(i∗) is the binary representation of

number i∗. The length of such code is exactly the given expression and by the same

reason in (a), we can show that it is prefix-free.
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(c) As the hint suggests, we can use prefix free code Ck such that length(Ck) ≤ d− log2 pk(u)e
and construct the prefix-free code C as in [b]. Then we have

length(C(u)) = dlog2Ke+ min
0≤k<K−1

length(Ck(u)) (27)

≤ dlog2Ke+ 1− min
0≤k<K−1

log2 pk(u) (28)

≤ dlog2Ke+ 1− log2 p(u) (29)

Taking expectation at both sides, we get that

E[length(C(U))] ≤ dlog2Ke+ 1 +H(U). (30)
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Problem 5. (Inner Products)

Consider the standard n-dimensional vector space Rn.

1. [5pts] Characterize the set of matrices W for which yTWx is a valid inner product for

any x,y ∈ Rn.

2. [5pts] Prove that every inner product 〈x,y〉 on Rn can be expressed as yTWx for an

approriately chosen matrix W.

3. [10pts] For a subspace of dimension k < n, spanned by the basis b1,b2, . . . ,bk ∈ Rn,

express the orthogonal projection operator (matrix) with respect to the general inner

product 〈x,y〉 = yTWx. Hint: For any vector x ∈ Rn, express its projection as

x̂ =
∑k

j=1 αjbj.

Solution:

1. Looking at the lecture notes, Section 7.3, an inner product must satisfy linearity prop-

erties, which clearly hold for all matrices W. The symmetry property 〈x,y〉 = 〈y,x〉
only holds if the matrix W is symmetric, i.e., W T = W. The crucial requirement is the

last property, namely, 〈x,x〉 ≥ 0, with equality if and only if x = 0. To tackle this,

note that W has to be symmetric, so it has a spectral decomposition W = UΛUH .

Hence, it is a clever idea to express the vectors x and y in terms of the eigenvectors

of W. Then, clearly, if all eigenvalues of W are strictly positive, then the property is

satisfied. Conversely, if there is a eigenvalue equal to zero, or a negative eigenvalue,

then there exists a choice x 6= 0 for which 〈x,x〉 = 0. In conclusion, yTWx is a valid

inner product if and only if W is a symmetric and positive definite.

2. To prove this, use the standard basis vectors to express x = x1e1 + . . . + xnen, and

likewise for y. Then, using the properties of the inner product, we find ...

3. As we have seen in class, the error x − x̂ must be orthogonal to the estimate x̂, or,

equivalently, orthogonal to all of the basis vectors bi. That is,

〈x− x̂,bi〉 = 0. (31)

Plugging in the hint x̂ =
∑k

j=1 αjbj, we get

〈x−
k∑
j=1

αjbj,bi〉 = 0, (32)

and using the standard properties of the inner product,

〈x,bi〉 −
k∑
j=1

αj〈bj,bi〉 = 0. (33)
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Defining the n× k matrix

B = (b1,b2, . . . ,bk), (34)

we can collect all k conditions (for i = 1, 2, . . . , k) into

BHWx−BHWBα = 0, (35)

where α denotes the column vector of all the coefficients αi. Hence,

α =
(
BHWB

)−1
BHWx, (36)

where we note that BHWB is invertible since the vectors bj constitute a basis. Finally,

we observe that we can write

x̂ = Bα = B
(
BHWB

)−1
BHWx, (37)

which is thus the desired projection matrix.

Grading Notes:

• Part 1: W symmetric: 2 pts. Positive definite: 3 pts.

– Properties of inner products: 2 pts. Spectral decomposition or eigenvalue decomposition: 1 pts.

• Part 2: correct W : 5 pts.

• Part 3: Orthogonal projection property: 3 pts. Replace inner product with BTWx: 3 pts. Correct

expression for α: 2 pts. Correct projection matrix: 2 pts.

12



Problem 6. (Thompson Sampling with Bernoulli Losses)

This problem deals with a Bayesian approach to multi-arm bandits. Although we will not

pursue this facet in the current problem, the Bayesian approach is useful since within this

framework it is relatively easy to incorporate prior information into the algorithm.

Assume that we have K bandits, and that bandit k outputs a {0, 1}-valued Bernoulli random

variable with parameter θk ∈ [0, 1]. Let π be the uniform prior on [0, 1]K , i.e., the uniform

prior on the set of all parameters θ = (θ1, · · · , θK). Let

T 1
k (t) = |{τ ≤ t : Aτ = k;Yτ = 1}|,
T 0
k (t) = |{τ ≤ t : Aτ = k;Yτ = 0}|.

In words, T 1
k (t) is the number of times up to and including time t that we have chosen action

k and the output of arm k was 1 and similarly T 0
k (t) is the number of times up to and

including time t that we have choses action k and the output of the arm k was 0.

The goal is to find the arm with the highest parameter, i.e., the goal is to determine

k∗ = argmaxkθk.

In the Bayesian approach we proceed as follows. At time time t:

1. Compute for each arm k the distribution p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)).

2. Generate samples of these parameters according to their distributions.

3. Pick the arm j with the largest sample.

4. Observe the output of the j-th arm, call it Yj(t), and update the counters T 1
j and T 0

j

accordingly.

Show that this algorithm “works” in the sense that eventually it will pick the best arm.

More precisely, show the following two claims.

1. [10pts] Show that p(θk(t)|T 1
k (t − 1), T 0

k (t − 1)) is a Beta distributed and determine α

and β.

2. [10pts] Show that as t tends to infinity the probability that we choose the correct

arm tends to 1. [HINT: To simplify your life, you can assume that for every arm k,

T 1
k (t− 1) + T 0

k (t− 1)
t→∞→ ∞.]

NOTE: Recall that the density of the Beta distribution on [0, 1] with parameters α and β is

equal to

f(x;α, β) = constant xα−1(1− x)β−1.

Further, the expected value of f(x;α, β) is α
α+β

and its variance is αβ
(α+β)2(α+β+1)

.
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Solution:

1. A quick calculation shows that p(θk(t)|T 1
k (t − 1), T 0

k (t − 1)) = f(x; 1 + T 1
k (t − 1), 1 +

T 0
k (t−1)). Note that this is the same calculation that we did when we showed that the

Beta distribution is the conjugate prior to the Binomial distribution. Explicity, and

dropping the time index as well as the index indicating the arm, we have

p(θ | T 1, T 0) ∼ p(θ)p(T 1, T 0 | θ)
∼ θT

1

(1− θ)T 0

= f(θ; 1 + T 1, 1 + T 0).

2. According to the hint and our computation above, the expected value at time t is equal

to

1 + T 1
k (t− 1)

2 + T 1
k (t− 1) + T 0

k (t− 1)
.

By assumption T 1
k (t− 1) + T 0

k (t− 1)
t→∞→ ∞ and by the law of larger numbers T 1

k (t−
1)/(T 1

k (t− 1) + T 0
k (t− 1)) and hence also (1 + T 1

k (t− 1))/(2 + T 1
k (t− 1) + T 0

k (t− 1)),

converges to θk almost surely. Therefore, our estimates for all means converge to the

correct values almost surely. Further, all variances tend to 0 and hence the probability

that we choose the correct arm will tend to 1 as t tends to infinity.

14


