APA lecture 2
Probability measures
$(\Omega=$ fundamental set, $F=6$-field) $)$ measurable
Def: A probability measure on (Ω, F) is a mapping
$P: F \rightarrow[0,1]$ such that
(i) $\mathbb{P}(\phi)=0$ and $\mathbb{P}(\Omega)=1$
(ii) finite additivity: if $A_{1} \ldots A_{n} \in F$ are such that $A_{j} \cap A_{k}=\phi$ then $\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right)=\sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right)$
(ii') σ-addivity: if $\left(A_{n}, n \geqslant 1\right) \subset F$ is st $A_{j} \cap A_{n}=\phi$ then $\mathbb{P}\left(\bigcup_{n \geqslant 1} A_{n}\right)=\sum_{n \geqslant 1} \mathbb{P}\left(A_{n}\right)$ ぬ $\neq k$

Terminology: (Ω, F, \mathbb{P}) is a probability space

Properties: If \mathbb{P} is a probability measure on (Ω, F), then:
(iii)
(iii) If $A_{1} \ldots A_{n} \in F$, then $\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) \leq \sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right)$
(iii') If $\left(A_{n}, n \geqslant 1\right) c F$, then $\mathbb{P}\left(\bigcup_{n \geqslant 1} A_{n}\right) \leq \sum_{n \geqslant 1} \mathbb{P}\left(A_{n}\right)$
(iv) If $A, B \in \mathcal{F} \& A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$ and $\mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$. Also $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$
(v) If $A, B \in F$, then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
(vi) If $\left(A_{n}, n \geqslant 1\right) \subset F$ is s.t. $A_{n} \subset A_{n+1} \quad \forall_{n} \geqslant 1$, then $\mathbb{P}\left(\bigcup_{n=1} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$
(vii) If $\left(A_{n}, n \geqslant 1\right) \subset F$ is st. $A_{n}>A_{n+1}$ bn श1, then $\mathbb{P}\left(\bigcap_{n \geqslant 1} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$

Example: $\Omega=\{1.6\}, F=P(\Omega)$

- $\mathbb{P}_{1}(\{i\})=\frac{1}{6}, \mathbb{P}_{1}(A)=\sum_{i \in A} \mathbb{P}_{1}(\{i\})=\frac{\# A}{6} \quad A \in F$
ex: $\operatorname{Pr}_{1}(\{1,3,5\})=\sum_{i \in\{13,5\}} \frac{1}{6}=\frac{3}{6}=\frac{1}{2}$

$$
\begin{aligned}
& \text { - } \mathbb{P}_{2}(\{i\})=0 \text { if } i \in\{1.5\} \quad \& \quad \mathbb{P}_{2}(\{6\})=1 \\
& \mathbb{P}_{2}(A)=\sum_{i \in A} \mathbb{P}_{2}(\{i\})=\left\{\begin{array}{cc}
1 & \text { if } 6 \in A \\
0 & \text { otherwise }
\end{array}\right. \\
& \Omega=\{1 . .6\}, F=\left\{\begin{array}{ccc}
\phi,\{1\},\{2 . .6\}, & \Omega\} \\
1 & p & 4 \\
0 & p & 1-p
\end{array} 1<\text { possible } \mathbb{P}\right.
\end{aligned}
$$

Example: $\Omega=[0,1]$

$$
\begin{aligned}
& \text { - } F=\sigma\left(I_{1}, \ldots, I_{n}\right) \quad \bigcup_{j=1}^{n} I_{j}=[0,1], I_{j} \cap I_{k}=\phi \\
& \text { - } F=B([0,1])=\sigma(\{] a, b[, 0 \leq a<b \leq 1\},\{0\},\{1\}) \\
& \mathbb{P}(] a, b[)=b-a \text { length of the interval }] a, b[
\end{aligned}
$$

Caratheodory's extension theorem: There exists a unique extension of \mathbb{P} on $B([0,1])$, that is:

- $\mathbb{P}(J a, b[)=b-a \quad \forall 0 \leq a<b \leq 1$
- \mathbb{R} is a probability measure an $\beta([0,1])$
$\mathbb{P}=$ Lebesgue measure on $[0,1]$ (= uniform measure an $[0,1]$)

Lebesque measure on \mathbb{R} and \mathbb{R}^{2}

- on $\mathbb{R}: B(\mathbb{R})=\sigma(J a, b C, a<b)$
$\Pi(] a, b[)=b-a \quad$ Lebesque measure of $] a, b[$
Caratheodory's extension theorran: $\exists a$ unizue extension of M on $B(R)$.
Notation: $\Pi(B)=|B| \in[0,+\infty]$
- on $\mathbb{R}^{2}: B\left(\mathbb{R}^{2}\right)=\sigma(] a, b[\times] c, d[: a<b, c<d)$ $M(] a, b[x] c, d[)=(b-a) \cdot(d-c)$
Caratheodory $\Rightarrow \exists$ a unigue extasion of M on $B\left(\mathbb{R}^{2}\right)$
Notation: $M(B)=|B|$

Terminology:
Let (Ω, F, \mathbb{P}) be a probability space An event $A \in F$ is said to be negligible if $P(A)=0$, resp. almost sure if $\mathbb{R}(A)=1$.
Ex: $: \Omega=[0,1], F=B([0,1]), ~ R=$ Lebesgue measure
\Rightarrow every singleton $\{x\}$ is negligible: $(\&[0,1] \backslash\{x\}$ is almost)

$$
\left.\{x\}=\bigcap_{n \geqslant 1}\right] x-\frac{1}{n}, x+\frac{1}{n}[\text {, so } P(\{x\}))=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

- $\Omega=\{1 . .6\}, F=P(\Omega), \mathbb{P}_{2}(A)= \begin{cases}1 & \text { if } 6 \in A \\ 0 & \text { otherwise }\end{cases}$
$\Rightarrow A=\{1 . .5\}$ is negligible: $\mathbb{P}_{2}(A)=0$
\& $A=\{6\}$ is ahost-sure: $\mathbb{R}_{2}(A)=1$

Proposition

- Let $\left(A_{n}, n \geqslant 1\right)$ be a collection of negligible sets Then $\bigcup_{n} \geq_{1} A_{n}$ is also negligible.
- Let $\left(B_{n}, n \geqslant 1\right)$ be a collection of almost-sure sets Then $\bigcap_{n \geqslant 1} B_{n}$ is also almost sure.

Proof: $\mathbb{P}\left(\bigcup_{n \geq 1} A_{n}\right) \leq \sum_{n 21} \underbrace{P\left(A_{n}\right)}_{=0}=0$

- Take $A_{n}=B_{n}^{c}$

Consequence: $A=\mathbb{Q} \cap[0,1]$ is negligible w.r.t. the Lebesgue measure.

Distribution of a randan variable
Def: Let (Ω, F, R) be a probability space
$X: \Omega \rightarrow \mathbb{R}$ be an F-measurable randan variable The distribution of X is the mapping $\Pi_{x}: B(R) \rightarrow[0,1]$ defined as:

$$
\begin{gathered}
\mu_{x}(B)=\mathbb{P}(\underbrace{\{\omega \in \Omega: X(\omega) \in B\})} \quad B \in B(\mathbb{R}) \\
=\{x \in B\}=x^{-1}(B) \in F
\end{gathered}
$$

Note: $\left(R, B(R), \mu_{x}\right)$ is another probability space.

Cumulative distribution function (cd)
Def: The cdf of a randan variable X is the mapping $F_{x}: \mathbb{R} \rightarrow[0,1]$ defined as

$$
\begin{aligned}
F_{x}(t) & =\mathbb{P}(\{x \leq t\}) \quad t \in \mathbb{R} \\
& \left.=\mu_{x}(J-\infty, t]\right)
\end{aligned}
$$

Fact: The knowledge of M_{x} is equivalent to the knowledge of F_{X}.

$$
\text { e.g: } \left.\mu_{x}(J a, b]\right)=F_{x}(b)-F_{x}(a)
$$

Properties:
(i) $\lim _{r \rightarrow-\infty} F_{x}(t)=0, \lim _{t \rightarrow+\infty} F_{x}(t)=1$
(ii) F_{x} is nan-decreasing: if $a \leq b$, then $F_{x}(a) \leq F_{x}(b)$
(iii) F_{x} is right-continuaus: $\lim _{\varepsilon \downarrow 0} F_{x}(t+\varepsilon)=F_{x}(t) \quad \forall t \in R$

Fact:

Any function $F: n \rightarrow(0,1]$ satisfying properties (i), (ii) and (iii) is the cdf of a randan variable X.
Rooks:

- F_{x} is not necessarily $k f f$-continuous
- Px has at most a cauntable number of jumps

1. Discrete randan variables

Def: X is a discrete randan variable if there exists a finite or countable set D such that $X(\omega) \in D \quad \forall \omega \in \Omega$.
Def: for $x \in D, \quad P_{x}=\mathbb{P}(\{X=x\})$
The sequence of numbers $\left(P_{x}, x \in D\right)$ is called the probability mass function (poi) of x
Properties: $0 \leqslant p_{x} \leqslant 1 \quad \forall x \in D, \sum_{x \in D} p_{x}=1$

$$
\begin{array}{ll}
\mu_{x}(B)=\sum_{x \in D \cap B} P_{x} & \forall B \in B(\mathbb{R}) \\
F_{x}(t)=\sum_{x \in D, x \leqslant t} P_{x} & \forall t \in \mathbb{R}
\end{array}
$$

2. Continuous randan variables

Def: $\left\{\begin{array}{l}X \text { is continues if } \mathbb{P}(\{x \in B\})=0 \\ \forall B \in B(\mathbb{R}) \text { such that }|B|=0\end{array}\right.$ $=$ Lebesgue measure of B
In particular, $\mathbb{P}(\{X=x\})=0 \quad \forall x \in \mathbb{R}$
Theorem: (Radon-Nikodym) Borel-measurable
In this case, there exists a function $P_{x}: \mathbb{R} \rightarrow \mathbb{R}_{+}$ such that $M_{x}(B)=\int_{B} P_{x}(x) d x \quad \forall B \in B(\mathbb{R})$.

Terminology: p_{x} is the probability density function ($p d f$) of x
Properties: $P_{x}(x) \geqslant 0 \quad \forall x \in \mathbb{R}$ (but may be >1)

$$
\begin{aligned}
& \cdot \int_{\mathbb{R}} P_{x}(x) d x=\mu_{x}(\mathbb{R})=\mathbb{R}(\{x \in \mathbb{R}\})=1 \\
& F_{x}(t)=\int_{-\infty}^{t} P_{x}(x) d x \quad t \in \mathbb{R}
\end{aligned}
$$

So F_{x} is continuous \& "differentiable": $F_{x}^{\prime}(r)=p_{x}(t)$

11) $p_{x}(x) \neq \mathbb{P}(\{X=x\})$ (which is equal to o $\forall x \in \mathbb{R}$)

Change of variable formula
Let X be a randan variable with c of F_{x}
$f: \mathbb{R} \rightarrow \mathbb{R}$ increasing (ie. if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$) $y=f(x)$. What is F_{y} ?

$$
\begin{aligned}
F_{y}(t) & =\mathbb{P}(\{y \leq t\})=\mathbb{P}(\{f(x) \leq t\})=\mathbb{P}\left(\left\{x \leq f^{-1}(t)\right\}\right) \\
& =F_{x}\left(f^{-1}(t)\right) \text { re} \mathbb{R}
\end{aligned}
$$

If in addition X is a contimuars r.V. and f is differentiable:

$$
P_{y}(t)=\frac{d}{d t} F_{y}(t)=\frac{d}{d t} F_{x}\left(f^{-1}(t)\right)=P_{x}\left(f^{-1}(t)\right) \cdot \frac{1}{f^{\prime}\left(f^{-1}(t)\right)} \quad t \in \mathbb{R}
$$

A strange $c d f$
Intro: the Cantor set

What is $|C|$? $\quad|C|=1-\sum_{n \geqslant 1}\left|A_{n}\right|$

$$
\begin{aligned}
& \left|A_{1}\right|=\frac{1}{3},\left|A_{2}\right|=\frac{2}{9},\left|A_{3}\right|=\frac{4}{2^{7}} \cdots\left|A_{n}\right|=\frac{2^{n-1}}{3^{n}} \\
& |C|=1-\frac{1}{2} \sum_{n \geqslant 1}\left(\frac{2}{3}\right)^{n}=1-\frac{1}{2}\left(\frac{1}{1-\frac{2}{3}}-1\right)=1-\frac{1}{2} \cdot 2=0 \\
& \left\{\begin{array}{l}
x \in \subseteq \text { ff } x=\sum_{n \geqslant 1} \frac{a_{n}}{3^{n}} \text { where } a_{n} \in\{0,2\} \Rightarrow C \text { is } \\
x \in[0,1] \text { iff } x=\sum_{n \geqslant 1} \frac{b_{n}}{2^{n}} \text { where } b_{n} \in\{0,1\} \quad \begin{array}{c}
\text { uncantable }
\end{array}
\end{array}\right.
\end{aligned}
$$

The devil's star case
Question: Does there exist a function $F:[0,1] \rightarrow[0,1]$
such that: $F F(0)=0$ \& $F(1)=1$

- F is continuars

- $\left|\left\{t \in[0,1]: F^{\prime}(t)=0\right\}\right|=1$? Yes!

$$
F^{\prime}(t)=0 \quad \forall t \in \bigcup_{n \geqslant 1} A_{n}
$$

$F(t)$ is a cdf!

- X is discrete? no (F conhimaus) $\cdot X$ is continuous? no ($P=F^{\prime}=0$ (almost earyubee)

