Final exam

SURNAME: \qquad FIRST NAME: \qquad

Exercise 1. (20 points) Let $\left(p_{j}, j \geq 1\right)$ be a sequence of non-negative numbers such that $\sum_{S \geq 1} p_{j}=1$. Let also ($X_{n}, n \geq 0$) be a time-homogeneous Markov chain with state space $S=\mathbb{N}=\{0,1,2,3, \ldots\}$ and transition matrix P represented by the following transition graph:

i.e., $p_{0 j}=p_{j}$ and $p_{j, j-1}=1$ for every $j \geq 1$ (and all other terms in the matrix P are equal to 0).
a) Under what minimal condition on the sequence $\left(p_{j}, j \geq 1\right)$ is the chain X irreducible?
b) Under what minimal condition on the sequence $\left(p_{j}, j \geq 1\right)$ is the chain X aperiodic?

Let us assume from now on that $p_{j}>0$ for every $j \geq 1$. (Hint for the above two questions: Under this condition, the chain X is irreducible and aperiodic).
c) Show that under this assumption, the chain X is always recurrent.

Hint: Let $T_{0}=\inf \left\{n \geq 1: X_{n}=0\right\}$ be the first return time to state 0 .
Compute $f_{00}^{(n)}=\mathbb{P}\left(T_{0}=n \mid X_{0}=0\right)$ for $n \geq 1$ and $f_{00}=\sum_{n \geq 1} f_{00}^{(n)}$.
d) Under what minimal condition on the sequence $\left(p_{j}, j \geq 1\right)$ is the chain X also positive-recurrent?

Hint: Compute $\mathbb{E}\left(T_{0} \mid X_{0}=0\right)$.
e) Under the condition found in part d), compute the stationary distribution π of the chain X. Is it also a limiting distribution? Is detailed balance satisfied?
f) In the particular case where $p_{j}=2^{-j}$ for $j \geq 1$, compute explicitly the stationary distribution π.

Exercise 2. ($18+5$ points)

Let $\left(X_{n}, n \geq 0\right)$ be a time-homogeneous Markov chain with state space $S=\{0,1,2,3\}$ and transidion matrix P represented by the following transition graph:

where $0<p, q<1$.
a) Compute the stationary distribution π of the chain. Is detailed balance satisfied for all parameters $0<p, q<1$?
b) Compute the eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ of the matrix P.

Hint: What is the rank of P ?
c) Let $0 \leq \alpha \leq 1$ and $\widetilde{P}=\alpha I+(1-\alpha) P$ be the transition matrix of the lazy Markov chain ($\widetilde{X}_{n}, n \geq 0$).
ci) Compute the spectral γ of \widetilde{P}, as a function of α.
c2) For what value of α is γ maximal?

Let us assume from now on that α takes the value found in cR).
c3) Deduce an upper bound on $\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{\mathrm{TV}}$.

BONUS d) Show that $P^{3}=P$ and deduce by induction that we have the following equality for n even:

$$
\begin{equation*}
\widetilde{P}^{n}=\alpha^{n} I+\frac{1}{2}\left(1-\alpha^{n}\right)\left(P+P^{2}\right) \tag{1}
\end{equation*}
$$

e) Use equation (1) to compute the value of $\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{\text {TV }}$ for n even.
(Please pay attention that e) is NOT a bonus question!)

Exercise 3. (12 points)

Let $\beta_{1}, \beta_{2}>0$. On the set $S=\mathbb{Z}^{2}=\left\{x=\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{Z}, x_{2} \in \mathbb{Z}\right\}$, one defines the distribution:

$$
\pi_{x}=\frac{1}{Z} \exp \left(-\beta_{1} x_{1}^{2}-\beta_{2} x_{2}^{2}\right) \quad \text { for } x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}
$$

where $Z=\sum_{x \in \mathbb{Z}^{2}} \exp \left(-\beta_{1} x_{1}^{2}-\beta_{2} x_{2}^{2}\right)$.

Define now a base chain on S whose transition probabilities are given by

$$
\psi_{x y}= \begin{cases}\frac{1}{4} & \text { if } y=x \pm e_{1} \text { or } y=x \pm e_{2} \\ 0 & \text { otherwise }\end{cases}
$$

where $e_{1}=(1,0)$ and $e_{2}=(0,1)$. The idea is then to use the Metropolis algorithm in order to sample from π.
a) Is this base chain irreducible? aperiodic? Does it hold that $\psi_{x y}>0$ if and only if $\psi_{y x}>0$?
b) Is this base chain ergodic?

For the rest of this exercise, assume in all your computations that $x_{1}>0$ and $x_{2}>0$.
c) Compute the acceptance probabilities $a_{x y}$, as well as the resulting transition probabilities $p_{x y}$ of the Metropolis chain (not forgetting $p_{x x}$).

Hint: Simplify as much as possible the expression for $a_{x y}$: it will help you for the next questions !
d) If $\beta_{1}<\beta_{2}$ and $x_{1}=x_{2}$, is $a_{x y}$ larger when $y=x+e_{1}$ or when $y=x+e_{2}$?
e) Is $a_{x y}$ larger when $y=x+e_{1}$ and x_{1} is small, or when $y=x+e_{1}$ and x_{1} is large?
f) Describe the shape of the set of points x (in the quadrant $x_{1} \geq 0, x_{2} \geq 0$) where the acceptance probabilities are roughly equal for both $y=x+e_{1}$ and $y=x+e_{2}$.

