Homework 13

Exercise 1. Let 0 and <math>x > 0 be fixed real numbers and $(X_n, n \in \mathbb{N})$ be the process defined recursively as

$$X_0 = x, \quad X_{n+1} = \begin{cases} X_n^2 + 1 & \text{with probability } p \\ X_n/2 & \text{with probability } 1 - p \end{cases}$$
 for $n \in \mathbb{N}$

a) What minimal condition on 0 guarantees that the process X is a submartingale (with respect to its natural filtration)? Justify your answer.

Hint: The inequality $a^2 + b^2 \ge 2ab$ may be useful here.

- b) For the values of p respecting the condition found in part a), derive a lower bound on $\mathbb{E}(X_n)$. Hint: Proceed recursively.
- c) Does there exist a value of 0 such that the process X is a martingale? a supermartingale? Again, justify your answer.

Exercise 2*. Let $0 and <math>M = (M_n, n \in \mathbb{N})$ be the process defined recursively as

$$M_0 = x \in]0,1[, \quad M_{n+1} = \begin{cases} p M_n, & \text{with probability } 1 - M_n \\ (1-p) + p M_n, & \text{with probability } M_n \end{cases}$$

and $(\mathcal{F}_n, n \in \mathbb{N})$ be the filtration defined as $\mathcal{F}_n = \sigma(M_0, \dots, M_n), n \in \mathbb{N}$.

- a) For what value(s) of 0 is the process <math>M is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? Justify your answer.
- b) In the case(s) M is a martingale, compute $\mathbb{E}(M_{n+1}(1-M_{n+1})|\mathcal{F}_n)$ for $n \in \mathbb{N}$.
- c) Deduce the value of $\mathbb{E}(M_n (1 M_n))$ for $n \in \mathbb{N}$.
- d) Does there exist a random variable M_{∞} such that

(i)
$$M_n \underset{n \to \infty}{\to} M_\infty$$
 a.s. ? (ii) $M_n \underset{n \to \infty}{\overset{L^2}{\to}} M_\infty$? (iii) $\mathbb{E}(M_\infty | \mathcal{F}_n) = M_n, \forall n \in \mathbb{N}$?

e) What can you say more about M_{∞} ? (No formal justification required here; an intuitive argument will do.)

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{G} be a sub- σ -field of \mathcal{F} . Let $U \sim \mathcal{U}([-1, +1])$ be a random variable independent of \mathcal{G} and M be a positive, integrable and \mathcal{G} -measurable random variable.

a) Compute the function $\psi : \mathbb{R}_+ \to \mathbb{R}$ satisfying

$$\psi(M) = \mathbb{E}(|M + U| \mid \mathcal{G})$$

Let now $(U_n, n \ge 1)$ be a sequence of i.i.d. $\sim \mathcal{U}([-1, +1])$ random variables, all defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(U_1, \dots, U_n), n \ge 1$. Let finally $(M_n, n \ge 1)$ be the process defined recursively as

$$M_0 = 0$$
, $M_{n+1} = |M_n + U_{n+1}|$, $n \in \mathbb{N}$

- b) Show that the process $(M_n, n \in \mathbb{N})$ is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- c) Compute the unique predictable and increasing process $(A_n, n \in \mathbb{N})$ such that the process $(M_n A_n, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- d) Is it true that the process $(M_n^2, n \in \mathbb{N})$ is also a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? Justify your answer.
- e) Determine the value of c > 0 such that the process $(N_n = M_n^2 cn, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.
- f) Does there exist a random variable M_{∞} such that $M_n \to M_{\infty}$ almost surely? (Again, no formal justification required here; an intuitive argument will do.)