Homework 14

Exercise 1.

Part I. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(\left\{X_{n}=+1\right\}\right)=p$ and $\mathbb{P}\left(\left\{X_{n}=-1\right\}\right)=1-p$ for some fixed $0<p<1 / 2$.

Let $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}, n \geq 1$. Let also $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right), n \geq 1$.

Preliminary question. Deduce from Hoeffding's inequality that for any $0<p<1 / 2$,

$$
\mathbb{P}\left(\left\{\left|S_{n}-n(2 p-1)\right| \geq n t\right\}\right) \leq 2 \exp \left(-\frac{n t^{2}}{2}\right) \quad \forall t>0, n \geq 1
$$

This inequality will be useful at some point in this exercise.

Let now $\left(Y_{n}, n \in \mathbb{N}\right)$ be the process defined as $Y_{n}=\lambda^{S_{n}}$ for some $\lambda>0$ and $n \in \mathbb{N}$.
a) Using Jensen's inequality only, for what values of λ can you conclude that the process Y is a submartingale with respect to ($\mathcal{F}_{n}, n \in \mathbb{N}$)?
b) Identify now the values of $\lambda>0$ for which it holds that the process $\left(Y_{n}=\lambda^{S_{n}}, n \in \mathbb{N}\right)$ is a martingale / submartingale / supermartingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
c) Compute $\mathbb{E}\left(\left|Y_{n}\right|\right)$ and $\mathbb{E}\left(Y_{n}^{2}\right)$ for every $n \in \mathbb{N}$ (and every $\lambda>0$).
d) For what values of $\lambda>0$ does it hold that $\sup _{n \in \mathbb{N}} \mathbb{E}\left(\left|Y_{n}\right|\right)<+\infty$? $\sup _{n \in \mathbb{N}} \mathbb{E}\left(Y_{n}^{2}\right)<+\infty$?
e) Run the process Y numerically. For what values of $\lambda>0$ do you observe that there exists a random variable Y_{∞} such that $Y_{n} \underset{n \rightarrow \infty}{\rightarrow} Y_{\infty}$ a.s.?
Prove it then theoretically and compute the random variable Y_{∞} when it exists (this computation might depend on λ, of course).
f) For what values of $\lambda>0$ does it hold that $Y_{n} \underset{n \rightarrow \infty}{\stackrel{L^{2}}{\rightarrow}} Y_{\infty}$?
g) Finally, for what values of $\lambda>0$ does it hold that $\mathbb{E}\left(Y_{\infty} \mid \mathcal{F}_{n}\right)=Y_{n}, \forall n \in \mathbb{N}$?

Part II. Consider now the (interesting) value λ for which the process Y is a martingale. (Spoiler: there is a unique such value of λ, and it is greater than 1.)

Let $a \geq 1$ be an integer and consider the stopping time $T_{a}=\inf \left\{n \in \mathbb{N}: Y_{n} \geq \lambda^{a} \quad\right.$ or $\left.\quad Y_{n} \leq \lambda^{-a}\right\}$.
a) Estimate numerically $\mathbb{P}\left(\left\{Y_{T_{a}}=\lambda^{a}\right\}\right)$ for some values of a. Explain your method.
b) Is it true that $\mathbb{E}\left(Y_{T_{a}}\right)=\mathbb{E}\left(Y_{0}\right)$? Justify your answer.
c) If possible, use the previous statement to compute $P=\mathbb{P}\left(\left\{Y_{T_{a}}=\lambda^{a}\right\}\right)$ theoretically. How fast does this probability decay with a ?

Consider finally the other stopping time $T_{a}^{\prime}=\inf \left\{n \in \mathbb{N}: Y_{n} \geq \lambda^{a}\right\}$.
d) Estimate numerically $\mathbb{P}\left(\left\{Y_{T_{a}^{\prime}}=\lambda^{a}\right\}\right)$ for some values of a. Explain your method.
e) Is it true that $\mathbb{E}\left(Y_{T_{a}^{\prime}}\right)=\mathbb{E}\left(Y_{0}\right)$? Justify your answer.
f) If possible, use the above statement to compute $P^{\prime}=\mathbb{P}\left(\left\{Y_{T_{a}^{\prime}}=\lambda^{a}\right\}\right)$ theoretically. Is this probability P^{\prime} greater or smaller than P ?

