Solutions to Homework 14

Exercise 1.

Preliminary question. This question just requires a direct application of the generalized version of Hoeffding's inequality.

Part I.

a) As $0<p<1 / 2, S$ is a supermartingale. Also, $\lambda^{x}=e^{x \log (\lambda)}$ is a convex function $\forall \lambda>0$, but is increasing for $\lambda \geq 1$ and decreasing for $\lambda \leq 1$. Therefore, applying Jensen's inequality gives

$$
\mathbb{E}\left(\lambda^{S_{n+1}} \mid \mathcal{F}_{n}\right) \geq \lambda^{\mathbb{E}\left(S_{n+1} \mid \mathcal{F}_{n}\right)} \geq \lambda^{S_{n}}
$$

only when $\lambda \leq 1$.
b) We have

$$
\mathbb{E}\left(\lambda^{S_{n+1}} \mid \mathcal{F}_{n}\right)=\lambda^{S_{n}} \mathbb{E}\left(\lambda^{X_{n+1}}\right)=\lambda^{S_{n}}\left(\lambda p+\frac{1}{\lambda}(1-p)\right)
$$

which says that Y is a submartingale if and only if $E=\lambda p+\frac{1}{\lambda}(1-p) \geq 1$. Solving this (quadratic) inequation, we obtain the condition: $\lambda \in]-\infty, 1] \cup\left[\frac{1-p}{p},+\infty[\right.$. For the martingale condition to hold ($E=1$), it must be that either $\lambda=1$ (trivial case) or $\lambda=\frac{1-p}{p}$. Finally, Y is a supermartingale $(E \leq 1)$ if and only if $\lambda \in\left[1, \frac{1-p}{p}\right]$.
c) By independence, we have $\mathbb{E}\left(\left|Y_{n}\right|\right)=\mathbb{E}\left(Y_{n}\right)=\prod_{j=1}^{n} \mathbb{E}\left(\lambda^{X_{j}}\right)=\left(\lambda p+\frac{1}{\lambda}(1-p)\right)^{n}$ and

$$
\mathbb{E}\left(Y_{n}^{2}\right)=\prod_{j=1}^{n} \mathbb{E}\left(\lambda^{2 X_{j}}\right)=\left(\lambda^{2} p+\frac{1}{\lambda^{2}}(1-p)\right)^{n}
$$

d) Using the analysis done in question b), we obtain that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(\left|Y_{n}\right|\right)<+\infty \quad \text { if and only if } \quad \lambda p+\frac{1}{\lambda}(1-p) \leq 1 \quad \text { if and only if } \quad \lambda \in\left[1, \frac{1-p}{p}\right]
$$

Likewise,

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(Y_{n}^{2}\right)<+\infty \quad \text { if and only if } \quad \lambda^{2} p+\frac{1}{\lambda^{2}}(1-p) \leq 1 \quad \text { if and only if } \quad \lambda \in\left[1, \sqrt{\frac{1-p}{p}}\right]
$$

as we simply need to replace λ by λ^{2} here.
e) Numerically (see the code), we see clearly that $Y_{n} \equiv 1$ when $\lambda=1$ and that $Y_{n} \underset{n \rightarrow \infty}{\rightarrow} 0$ a.s. for all $\lambda>1$. Theoretically, this is due to the fact that $S_{n} \underset{n \rightarrow \infty}{\rightarrow}-\infty$ a.s. (one can use Hoeffding's inequality to justify this fact), so that $Y_{n}=\lambda^{S_{n}}$ converges a.s. to 0 when $\lambda>1$ (even though Y is a submartingale for $\lambda>\frac{1-p}{p}$).
The martingale convergence theorem itself only allows to conclude that Y converges a.s. when $\lambda \in\left[1, \frac{1-p}{p}\right]$, i.e., when the first condition in question d) is satisfied.
f) For the process Y to converge also in L^{2} towards its limit, we need the second condition in part d) to hold, i.e., $\lambda \in\left[1, \sqrt{\frac{1-p}{p}}\right]$ (indeed, if this condition is not met, then $\mathbb{E}\left(Y_{n}^{2}\right)$ diverges, so no L^{2} convergence can take place).
g) The only value of λ for which the equality $\mathbb{E}\left(Y_{\infty} \mid \mathcal{F}_{n}\right)=Y_{n}$ is satisfied for all $n \in \mathbb{N}$ is the trivial case $\lambda=1$. For all the other values of $\lambda \in\left[1, \sqrt{\frac{1-p}{p}}\right], Y$ is a supermartingale, which gives $\mathbb{E}\left(Y_{\infty} \mid \mathcal{F}_{n}\right) \leq Y_{n}$ for all $n \in \mathbb{N}$. But in this case, we already know that $Y_{\infty}=0$, so what the above inequality is actually saying is that $0 \leq Y_{n}$, i.e., not much...

Part II. We consider the case $\lambda=\frac{1-p}{p}(>1)$.
a) Method: observe first that $T_{a}=\inf \left\{n \in \mathbb{N}: S_{n} \geq a \quad\right.$ or $\left.\quad S_{n} \leq-a\right\}$. Run then $M=1^{\prime} 000$ times the process S for $N=1^{\prime} 000$ time steps; count the number of times m the barrier a is reached before $-a$ (see the code for the implementation). The probability $P=\mathbb{P}\left(\left\{Y_{T_{a}}=\lambda^{a}\right\}\right)$ is then approximately given by m / M (there are of course fluctuations here).
b) It is true that $\mathbb{E}\left(Y_{T_{a}}\right)=\mathbb{E}\left(Y_{0}\right)$. The third version of the optional stopping theorem allows to say this, as the martingale Y makes bounded jumps and is contained in the interval $\left[\lambda^{-a}, \lambda^{a}\right]$ before the stopping time T_{a}.
c) As the martingale convergence theorem applies, we obtain

$$
1=\mathbb{E}\left(Y_{0}\right)=\mathbb{E}\left(Y_{T_{a}}\right)=\lambda^{a} P+\lambda^{-a}(1-P)
$$

so

$$
P=\frac{1-\lambda^{-a}}{\lambda^{a}-\lambda^{-a}}=\frac{\lambda^{a}-1}{\lambda^{2 a}-1}=\frac{1}{\lambda^{a}+1}
$$

This probability decays exponentially in a.
d) Method: Run again $M=1^{\prime} 000$ times the process S for $N=1^{\prime} 000$ time steps; count the number of times m the barrier a is reached at all (see the code for the implementation). The probability $P^{\prime}=\mathbb{P}\left(\left\{Y_{T_{a}^{\prime}}=\lambda^{a}\right\}\right)$ is then approximately given by m / M (there are of course also fluctuations here).
e) It is also true that $\mathbb{E}\left(Y_{T_{a}^{\prime}}\right)=\mathbb{E}\left(Y_{0}\right)$! The third version of the optional stopping theorem allows to say this, as the martingale Y makes bounded jumps and is contained in the interval $\left[0, \lambda^{a}\right]$ before the stopping time T_{a}^{\prime} (even though the process S itself is unbounded).
f) As the martingale convergence theorem applies, we obtain

$$
1=\mathbb{E}\left(Y_{0}\right)=\mathbb{E}\left(Y_{T_{a}^{\prime}}\right)=\lambda^{a} P^{\prime}+0\left(1-P^{\prime}\right)
$$

[Comment: if level a is not reached, this is saying that the process S goes to $-\infty$ and never comes back to level a; of course, this can only happen with positive probability when S is a (strict) supermartingale with a negative drift.] Therefore,

$$
P^{\prime}=\frac{1}{\lambda^{a}}
$$

which is strictly greater than P, but decays also exponentially in a.

