Homework 11

Exercise 1*. Let $\left(M_{n}, n \in \mathbb{N}\right)$ be a submartingale with respect to a filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel-measurable and convex function such that $\mathbb{E}\left(\left|\varphi\left(M_{n}\right)\right|\right)<+\infty, \forall n \in \mathbb{N}$.
a) What additional property of φ ensures that the process $\left(\varphi\left(M_{n}\right), n \in \mathbb{N}\right)$ is also a submartingale?
b) In particular, which of the following two processes is ensured to be a submartingale: $\left(M_{n}^{2}, n \in \mathbb{N}\right)$ and/or $\left(\exp \left(M_{n}\right), n \in \mathbb{N}\right)$?

Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables such $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)=\frac{1}{2}$; let $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$; finally, let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ for $n \geq 1$.
c) For which value of $c>0$ is the process $\left(S_{n}^{2}-c n, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$?
d) For which value of $c>0$ is the process $\left(\frac{\exp \left(S_{n}\right)}{c^{n}}, n \in \mathbb{N}\right)$ a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$?

Assume now that $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=p=1-\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)$ for some $0<p<1$ with $p \neq \frac{1}{2}$.
e) Does there exist a number $c>0$ such that the process $\left(S_{n}^{2}-c n, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$? If yes, compute the value of c; otherwise, justify why it is not the case.
f) Does there exist a number $c>0$ such that the process $\left(\frac{\exp \left(S_{n}\right)}{c^{n}}, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$? If yes, compute the value of c; otherwise, justify why it is not the case.

Exercise 2. a) Let ($M_{n}, n \in \mathbb{N}$) be an increasing martingale, that is, $M_{n+1} \geq M_{n}$ a.s. for all $n \in \mathbb{N}$. Show that $M_{n}=M_{0}$ a.s., for all $n \in \mathbb{N}$.
b) Let $\left(M_{n}, n \in \mathbb{N}\right)$ be a square-integrable martingale such that $\left(M_{n}^{2}, n \in \mathbb{N}\right)$ is also a martingale. Show that $M_{n}=M_{0}$ a.s., for all $n \in \mathbb{N}$.

Exercise 3. Let $\left(S_{n}, n \in \mathbb{N}\right)$ be the simple symmetric random walk, $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ be its natural filtration and

$$
T=\inf \left\{n \geq 1: S_{n} \geq a \quad \text { or } \quad S_{n} \leq-b\right\},
$$

where a, b are positive integers.
a) Show that T is a stopping time with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
b) Use the optional stopping theorem to compute $\mathbb{P}\left(\left\{S_{T}=a\right\}\right)$.

Let now ($M_{n}, n \in \mathbb{N}$) be defined as $M_{n}=S_{n}^{2}-n$, for all $n \in \mathbb{N}$.
c) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
d) Apply the optional stopping theorem to compute $\mathbb{E}(T)$.

Remark: Even though T is an unbounded stopping time, the optional stopping theorem applies both in parts b) and d). Notice that the theorem would not apply if one would consider the stopping time: $T^{\prime}=\inf \left\{n \geq 1: S_{n} \geq a\right\}$.

