Solutions to Homework 11

Exercise 1*. a) By Jensen's inequality, we know that

$$
\mathbb{E}\left(\varphi\left(M_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)\right)
$$

We also know that $\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right) \geq X_{n}$, since $\left(M_{n}, n \in \mathbb{N}\right)$ is a submartingale. The function φ needs therefore to be also increasing in order to ensure that

$$
\mathbb{E}\left(\varphi\left(M_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(M_{n}\right)
$$

b) In particular, $\left(M_{n}^{2}, n \geq 1\right)$ need not be a submartingale, whereas $\left(\exp \left(M_{n}\right), n \geq 1\right)$ always is.
c) For every $n \in \mathbb{N}$, S_{n}^{2} is bounded and \mathcal{F}_{n}-measurable, and

$$
\begin{aligned}
\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(S_{n}^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2} \mid \mathcal{F}_{n}\right) \\
& =S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)=S_{n}^{2}+1
\end{aligned}
$$

so we should take $c=1$.
d) For every $n \in \mathbb{N}, \exp \left(S_{n}\right) / c^{n}$ is bounded and \mathcal{F}_{n}-measurable. Let us then compute

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(S_{n+1}\right) \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(\exp \left(S_{n}+X_{n+1}\right) \mid \mathcal{F}_{n}\right)=\exp \left(S_{n}\right) \mathbb{E}\left(\exp \left(X_{n+1}\right)\right) \\
& =\exp \left(S_{n}\right) \frac{e^{+1}+e^{-1}}{2}=\exp \left(S_{n}\right) \cosh (1)
\end{aligned}
$$

so we should take $c=\cosh (1)$.
e) The answer is no. Indeed, we have:

$$
\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left(S_{n}+X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)=S_{n}^{2}+2(2 p-1) S_{n}+1
$$

and there is no way to make the middle term disappear by considering $S_{n}^{2}-c n$ with $c>0$ instead of S_{n}^{2}.
f) In this case, the answer is yes:

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(S_{n+1}\right) \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(\exp \left(S_{n}+X_{n+1}\right) \mid \mathcal{F}_{n}\right)=\exp \left(S_{n}\right) \mathbb{E}\left(\exp \left(X_{n+1}\right)\right) \\
& =\exp \left(S_{n}\right)\left(p e^{+1}+(1-p) e^{-1}\right)
\end{aligned}
$$

Taking therefore $c=p e^{+1}+(1-p) e^{-1}$, we obtain what we want.

Exercise 2. a) We know that $M_{n+1}-M_{n} \geq 0$ a.s., for all $n \geq 0$, and since M is a martingale, we also know that $\mathbb{E}\left(M_{n+1}-M_{n}\right)=0$ for all $n \geq 0$, so $M_{n+1}=M_{n}$ a.s. for all $n \geq 0$, i.e. $M_{n}=M_{0}$ a.s. for all $n \geq 0$.
b) Let us compute, for $n \geq 0$,

$$
\begin{aligned}
\mathbb{E}\left(\left(M_{n+1}-M_{n}\right)^{2}\right) & =\mathbb{E}\left(M_{n+1}^{2}-2 M_{n+1} M_{n}+M_{n}^{2}\right)=\mathbb{E}\left(\mathbb{E}\left(M_{n+1}^{2}-2 M_{n+1} M_{n}+M_{n}^{2} \mid \mathcal{F}_{n}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)-2 \mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right) M_{n}+M_{n}^{2}\right)=\mathbb{E}\left(M_{n}^{2}-2 M_{n}^{2}+M_{n}^{2}\right)=0
\end{aligned}
$$

where we have used the assumption that $\mathbb{E}\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)=M_{n}^{2}$. Therefore, $M_{n}=M_{0}$ a.s. for all $n \geq 0$.

Exercise 3. a) For every $n \geq 0$, it holds that

$$
\{T=n\}=\left(\cap_{j=0}^{n-1}\left\{-b<S_{j}<a\right\}\right) \bigcap\left(\left\{S_{n} \leq-b\right\} \cup\left\{S_{n} \geq a\right\}\right)
$$

and as all these events belong to \mathcal{F}_{n}, so does $\{T=n\}$.
b) As a and b are positive integers, S_{T} can only take values in $\{-b, a\}$, so we obtain by the optional stopping theorem:

$$
0=\mathbb{E}\left(S_{0}\right)=\mathbb{E}\left(S_{T}\right)=a \mathbb{P}\left(S_{T}=a\right)-b \mathbb{P}\left(S_{T}=-b\right)=a \mathbb{P}\left(S_{T}=a\right)-b\left(1-\mathbb{P}\left(\left\{S_{T}=a\right\}\right)\right)
$$

which implies that $\mathbb{P}\left(\left\{S_{T}=a\right\}\right)=\frac{b}{a+b}$ [quite a "logical" result, if you think about it].
c) For $n \geq 0$, let us compute

$$
\begin{aligned}
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(S_{n+1}^{2}-(n+1) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(S_{n}^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2} \mid \mathcal{F}_{n}\right)-(n+1) \\
& =S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)-(n+1)=S_{n}^{2}+0+1-(n+1)=S_{n}^{2}-n=M_{n}
\end{aligned}
$$

which proves the claim.
d) Applying again the optional stopping theorem, we obtain

$$
0=\mathbb{E}\left(M_{0}\right)=\mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(S_{T}^{2}-T\right)=\mathbb{E}\left(S_{T}^{2}\right)-\mathbb{E}(T)
$$

So by part b), we obtain

$$
\mathbb{E}(T)=\mathbb{E}\left(S_{T}^{2}\right)=a^{2} \mathbb{P}\left(\left\{S_{T}=a\right\}\right)+b^{2} \mathbb{P}\left(\left\{S_{T}=-b\right\}\right)=a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=a b
$$

