Solutions to Homework 12

Exercise 1. Let $m \in \mathbb{N}$ and U be an \mathcal{F}_{m}-measurable and bounded random variable. Let us also define

$$
H_{n}= \begin{cases}U, & \text { if } n=m+1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $\left(H_{n}, n \in \mathbb{N}\right)$ is predictable and for $m<N$, we have by assumption that M_{m} is \mathcal{F}_{m}-measurable and also that

$$
0=\mathbb{E}\left((H \cdot M)_{N}\right)=\mathbb{E}\left(U\left(M_{m+1}-M_{m}\right)\right) .
$$

Therefore, $M_{m}=\mathbb{E}\left(M_{m+1} \mid \mathcal{F}_{m}\right)$, so $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale.

Exercise 2. For all $n \geq 0$, we have

$$
\begin{aligned}
& \mathbb{E}\left(M_{n+1}^{2}-\mathbb{E}\left(M_{n+1}^{2}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left(M_{n}+X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)-\mathbb{E}\left(\left(M_{n}+X_{n+1}\right)^{2}\right) \\
& =M_{n}^{2}-2 M_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)-\mathbb{E}\left(M_{n}^{2}\right)-2 \mathbb{E}\left(M_{n} X_{n+1}\right)-\mathbb{E}\left(X_{n+1}^{2}\right)=M_{n}^{2}-\mathbb{E}\left(M_{n}^{2}\right)
\end{aligned}
$$

as $\mathbb{E}\left(M_{n} X_{n+1}\right)=\mathbb{E}\left(M_{n}\right) \mathbb{E}\left(X_{n+1}\right)=0$.

Exercise 3*. a) No. H_{j} is \mathcal{F}_{j-1}-measurable, while X_{j} is independent of \mathcal{F}_{j}, so

$$
\mathbb{E}\left(H_{j} X_{j}\right)=\mathbb{E}\left(H_{j}\right) \mathbb{E}\left(X_{j}\right)=\mathbb{E}\left(H_{j}\right) 0=0
$$

b) We have

$$
\begin{aligned}
A_{n+1}-A_{n} & =\mathbb{E}\left(G_{n+1}^{2} \mid \mathcal{F}_{n}\right)-G_{n}^{2}=\mathbb{E}\left(\left(G_{n}+H_{n+1} X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)-G_{n}^{2} \\
& =G_{n}^{2}+2 G_{n} H_{n+1} \mathbb{E}\left(X_{n+1}\right)+H_{n+1}^{2} \mathbb{E}\left(X_{n+1}^{2}\right)-G_{n}^{2}=H_{n+1}^{2}
\end{aligned}
$$

so $A_{0}=0$ and $A_{n}=\sum_{j=1}^{n} H_{j}^{2}$.
c) $H_{j}^{2}=1$ for all j, so $A_{n}=n$.
d) Here, the idea is to use the optional stopping theorem with the martingale ($G_{n}^{2}-n, n \in \mathbb{N}$), which gives

$$
\mathbb{E}\left(G_{T}^{2}-T\right)=\mathbb{E}\left(G_{0}^{2}-0\right)=0, \quad \text { so } \quad \mathbb{E}(T)=\mathbb{E}\left(G_{T}^{2}\right)=a^{2}
$$

Unfortunately, a full justification of the use of the theorem is impossible here using only the tools that you have learned in class, because the martingale $\left(G_{n}^{2}-n, n \in \mathbb{N}\right)$ is not bounded from below until the (unbounded) time T.

