Advanced Probability and Applications

Solutions to Homework 12

Exercise 1. Let $m \in \mathbb{N}$ and U be an \mathcal{F}_m -measurable and bounded random variable. Let us also define

$$H_n = \begin{cases} U, & \text{if } n = m+1\\ 0, & \text{otherwise.} \end{cases}$$

Then $(H_n, n \in \mathbb{N})$ is predictable and for m < N, we have by assumption that M_m is \mathcal{F}_m -measurable and also that

$$0 = \mathbb{E}((H \cdot M)_N) = \mathbb{E}(U(M_{m+1} - M_m)).$$

Therefore, $M_m = \mathbb{E}(M_{m+1}|\mathcal{F}_m)$, so $(M_n, n \in \mathbb{N})$ is a martingale.

Exercise 2. For all $n \ge 0$, we have

$$\mathbb{E}(M_{n+1}^2 - \mathbb{E}(M_{n+1}^2)|\mathcal{F}_n) = \mathbb{E}((M_n + X_{n+1})^2|\mathcal{F}_n) - \mathbb{E}((M_n + X_{n+1})^2)$$

= $M_n^2 - 2M_n \mathbb{E}(X_{n+1}) + \mathbb{E}(X_{n+1}^2) - \mathbb{E}(M_n^2) - 2\mathbb{E}(M_n X_{n+1}) - \mathbb{E}(X_{n+1}^2) = M_n^2 - \mathbb{E}(M_n^2)$

as $\mathbb{E}(M_n X_{n+1}) = \mathbb{E}(M_n) \mathbb{E}(X_{n+1}) = 0.$

Exercise 3*. a) No. H_j is \mathcal{F}_{j-1} -measurable, while X_j is independent of \mathcal{F}_j , so

$$\mathbb{E}(H_j X_j) = \mathbb{E}(H_j) \mathbb{E}(X_j) = \mathbb{E}(H_j) 0 = 0$$

b) We have

$$A_{n+1} - A_n = \mathbb{E}(G_{n+1}^2 | \mathcal{F}_n) - G_n^2 = \mathbb{E}((G_n + H_{n+1}X_{n+1})^2 | \mathcal{F}_n) - G_n^2$$

= $G_n^2 + 2G_nH_{n+1}\mathbb{E}(X_{n+1}) + H_{n+1}^2\mathbb{E}(X_{n+1}^2) - G_n^2 = H_{n+1}^2$

so $A_0 = 0$ and $A_n = \sum_{j=1}^n H_j^2$. c) $H_j^2 = 1$ for all j, so $A_n = n$.

d) Here, the idea is to use the optional stopping theorem with the martingale $(G_n^2 - n, n \in \mathbb{N})$, which gives

$$\mathbb{E}(G_T^2 - T) = \mathbb{E}(G_0^2 - 0) = 0$$
, so $\mathbb{E}(T) = \mathbb{E}(G_T^2) = a^2$

Unfortunately, a full justification of the use of the theorem is impossible here using only the tools that you have learned in class, because the martingale $(G_n^2 - n, n \in \mathbb{N})$ is not bounded from below until the (unbounded) time T.