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Exercise 1. We use the large deviations principle to find a tight upper bound. Before this, we
need to check that the moment generating function E(esX1) is finite in a proper neighborhood of
s = 0:

E(esX1) =

∫ ∞
0

esx λe−λx dx =
λ

λ− s
, for s < λ

Therefore, by applying the large deviations principle, we obtain for t > 1/λ:

P({Sn > nt}) ≤ exp(−nΛ∗(t)) where Λ∗(t) = max
s∈R

{
st− log

(
λ

λ− s

)}
By taking the derivative of st− log

(
λ
λ−s

)
with respect to s and setting it equal to zero, we obtain

that Λ∗(t) is maximum at s∗ = λ− 1
t . Hence,

P({Sn > nt}) ≤ exp(−n (λt− 1− log(λt)))

Exercise 2*. a) Use part (ii) of the definition with U ≡ 1 (such a U belongs to G).

b) (i) Z = E(X) is constant and therefore G-measurable; (ii) Let U ∈ G: E(XU) = E(X)E(U) =
E(E(X)U) = E(ZU) (using the independence of X and U and the linearity of expectation).

c) (i) Z = X is G-measurable by assumption; (ii) Let U ∈ G: E(XU) = E(ZU) !

d) (i) Z = E(X|G)Y is G-measurable; (ii) Let U ∈ G: E(XY U) = E(E(X|G)Y U), because
part (ii) of the definition of E(X|G) implies the previous equality (indeed, Y U ∈ G). Therefore,
E(XY U) = E(ZU).

e) Let us first check the left-hand side equality: E(X|H) is H-measurable, therefore G-measurable,
so one can apply property c).

For the right-hand side equality, one has: (i) Z = E(X|H) is H-measurable; (ii) Let U ∈ H:

E(E(X|G)U) = E(E(XU |G)) = E(XU) = E(E(X|H)U) = E(ZU)

using successively d), a) and the definition of E(X|H).

Exercise 3. a) We must check that E(ψ(Y ) g(Y )) = E(X g(Y )) for any continuous and bounded
function g. The computation gives indeed:

E(ψ(Y ) g(Y )) =
∑
y∈C

ψ(y) g(y) P({Y = y}) =
∑
x,y∈C

x g(y) P({X = x, Y = y}) = E(X g(Y ))

b) Let Y and Z be the two independent dice rolls: P({Y = i}) = P({Z = j}) = 0.25 and
P({Y = i, Z = j}) = P({Y = i})P({Z = j}). We therefore have E(max(Y,Z)|Y ) = ψ(Y ), where

ψ(i) =

4∑
j=i

max(i, j)P({max(Y, Z) = j}|{Y = i}) =

4∑
j=i

max(i, j)
P({max(Y,Z) = j, Y = i})

P({Y = i})

= i
P({Z ≤ i, Y = i})

P({Y = i})
+

4∑
j=i+1

j
P({Z = j, Y = i})

P({Y = i})
= iP({Z ≤ i}) +

4∑
j=i+1

j P({Z = j})

So ψ(1) = 2.5, ψ(2) = 2.75, ψ(3) = 3.25 and ψ(4) = 4.
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Exercise 4. a) Let us compute theoretically the first three MSE’s:

E((X̂1 −X)2) = E

((
X +

Z

a
−X

)2
)

=
E(Z2)

a2
=

1

a2

E((X̂2 −X)2) = E

((
a2X + aZ

a2 + 1
−X

)2
)

= E

((
− 1

a2 + 1
X +

a

a2 + 1
Z

)2
)

=
1

(a2 + 1)2
+

a2

(a2 + 1)2
=

1

a2 + 1

E((X̂3 −X)2) = E((sign(a2X + aZ)−X)2) = 4Q(−|a|)

where Q(x) =
∫ x
−∞ pZ(z)dz is the cdf of Z ∼ N (0, 1). The fourth MSE is given by

E((X̂4 −X)2) = E((tanh(a2X + aZ)−X)2) = 1− E(tanh(a2 + aZ)2)

(see computation below in part c) for the last equality). This expression can be computed by
numerical integration or by the Monte-Carlo method, as suggested in the problem set. The four
MSE’s are represented as functions of a on the figure below:

This shows that the fourth estimator gives the minimum MSE.

b) As we shall see below, the fourth estimator corresponds to the conditional expectation E(X|Y ),
which by definition minimizes E((Z−X)2) among all random variables Z which are σ(Y )-measurable
and square-integrable. The computation of the condition expectation gives E(X|Y ) = ψ(Y ), where

ψ(y) =
∑

x∈{−1,+1}

x
px pZ(y − ax)

pY (y)
=
pZ(y − a)− pZ(y + a)

pZ(y − a) + pZ(y + a)
=
eay − e−ay

eay + e−ay
= tanh(ay)

which confirms that E(X|Y ) = tanh(aY ) = X̂4.

NB: The first expression for the function ψ(y) above can be obtained either by reasoning intuitively
(and forgetting that we are dealing here with a mix of discrete (X) and continuous (Y ) random
variables), or by proving formally that the random variable ψ(Y ) satisfies (similarly to Ex. 2.a):

E(Xg(Y )) = E(ψ(Y ) g(Y )), for every g : R→ R continuous and bounded
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c) Using the following series of equalities:

E((E(X|Y )−X)2) = E(X2) + E(E(X|Y )2)− 2E(XE(X|Y ))

= E(X2) + E(E(X|Y )2)− 2E(E(XE(X|Y )|Y ))

= E(X2) + E(E(X|Y )2)− 2E(E(X|Y )2) = E(X2)− E(E(X|Y )2)

we see that

E((X̂4 −X)2) = E(X2)− E(X̂2
4 ) = 1− E(tanh(aY )2) = 1− E(tanh(a2 + aZ)2)

(noticing for the last equality that the value of X can be replaced by +1 using symmetry). A direct
computation shows that it also holds that E((X̂2 −X)2) = E(X2) − E(X̂2

2 ) = 1
a2+1

, but that the

equality does not hold for X̂1 and X̂3.
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