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Exercise 1. We use the large deviations principle to find a tight upper bound. Before this, we
need to check that the moment generating function E(e**1) is finite in a proper neighborhood of
s=0:
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Therefore, by applying the large deviations principle, we obtain for ¢ > 1/A:

P({Sn > nt}) < exp(—nA*(t)) where A*(t)=max {st — log (A i )}

seR

By taking the derivative of st — log ( ) with respect to s and setting it equal to zero, we obtain

—S
that A*(¢) is maximum at s* = A — +. Hence,

P({S, > nt}) < exp(—n (Mt — 1 —log(At)))

Exercise 2*. a) Use part (ii) of the definition with U =1 (such a U belongs to G).

b) (i) Z = E(X) is constant and therefore G-measurable; (ii) Let U € G: E(XU) = E(X)E(U) =
E(E(X)U) =E(ZU) (using the independence of X and U and the linearity of expectation).
¢) (i) Z = X is G-measurable by assumption; (ii) Let U € G: E(XU) =E(ZU) !

d) (i) Z = E(X|G)Y is G-measurable; (ii) Let U € G: E(XYU) = E(E(X|G)YU), because
part (ii) of the definition of E(X|G) implies the previous equality (indeed, YU € G). Therefore,
E(XYU) = E(ZU).

e) Let us first check the left-hand side equality: E(X|H) is H-measurable, therefore G-measurable,
so one can apply property c).

For the right-hand side equality, one has: (i) Z = E(X|H) is H-measurable; (ii) Let U € H:
E(E(X]9)U) = E(E(XU|G)) = E(XU) = E(E(X|H) U) = E(ZU)
using successively d), a) and the definition of E(X|H).

Exercise 3. a) We must check that E(¢(Y) g(Y)) = E(X g(Y)) for any continuous and bounded
function g. The computation gives indeed:

E(4)( =Y YW PEY =y}) = DY zgy) PUX =2,Y =y}) = E(X g(V))
yeC z,yeC
b) Let Y and Z be the two independent dice rolls: P({Y = i}) = P({Z = j}) = 0.25 and
P{Y =i,Z =j}) =P({Y =i})P({Z = j}). We therefore have E(max(Y, Z)|Y) = (Y), where

P({max(¥,Z) = j.Y = i})

P(i) = Zmax i,7) P({max(Y, Z) = j}{Y =i}) = Zmax i,7)
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So (1) = 2.5, ¥(2) = 2.75, 1(3) = 3.25 and h(4) =



Exercise 4. a) Let us compute theoretically the first three MSE’s:
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E((X3 — X)?) = E((sign(a’X + aZ) — X)?) = 4Q(—]al)

where Q(z) = [*__pz(2)dz is the cdf of Z ~ N(0,1). The fourth MSE is given by

E((X; — X)?) = E((tanh(a’X + aZ) — X)?) = 1 — E(tanh(a® + aZ)?)
(see computation below in part ¢) for the last equality). This expression can be computed by

numerical integration or by the Monte-Carlo method, as suggested in the problem set. The four
MSE’s are represented as functions of a on the figure below:

This shows that the fourth estimator gives the minimum MSE.

b) As we shall see below, the fourth estimator corresponds to the conditional expectation E(X|Y),
which by definition minimizes E((Z—X)?) among all random variables Z which are o (Y )-measurable
and square-integrable. The computation of the condition expectation gives E(X|Y) = ¢(Y'), where

vy = > G Papz(y—az) pz(y—a)—pzly+a) e —e®

= — = tanh(ay)
ze{—1,+1} py(y) pz(y—a)+pz(y+a) eW+e W

which confirms that E(X|Y) = tanh(aY) = X;.

NB: The first expression for the function 1 (y) above can be obtained either by reasoning intuitively
(and forgetting that we are dealing here with a mix of discrete (X) and continuous (Y') random
variables), or by proving formally that the random variable ¢ (Y') satisfies (similarly to Ex. 2.a):

E(Xg(Y)) =E@(Y)g(Y)), forevery g:R — R continuous and bounded



¢) Using the following series of equalities:
E((E(X]Y) - X)?) = E(X?) + E(E(X]Y)?) — 2E(XE(X|Y))
%)+ E(E(X]Y)?) - 2E(E(XE(X|Y)]Y))
%) +E(E(X|Y)?) - 2E(E(X]Y)?) = E(X?) ~ E(E(X[Y)?)
we see that

E((Xs — X)?) = E(X?) - E(X}) =1 — E(tanh(aY)?) = 1 — E(tanh(a® + aZ)?)

(noticing for the last equality that the value of X can be replaced by +1 using symmetry) A direct
computation shows that it also holds that E((X; — X)?) = E(X?) — E(XQ) = but that the

equality does not hold for X 1 and X3.
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