Solutions to Homework 10

Exercise 1. We use the large deviations principle to find a tight upper bound. Before this, we need to check that the moment generating function $\mathbb{E}\left(e^{s X_{1}}\right)$ is finite in a proper neighborhood of $s=0$:

$$
\mathbb{E}\left(e^{s X_{1}}\right)=\int_{0}^{\infty} e^{s x} \lambda e^{-\lambda x} d x=\frac{\lambda}{\lambda-s}, \quad \text { for } s<\lambda
$$

Therefore, by applying the large deviations principle, we obtain for $t>1 / \lambda$:

$$
\mathbb{P}\left(\left\{S_{n}>n t\right\}\right) \leq \exp \left(-n \Lambda^{*}(t)\right) \quad \text { where } \quad \Lambda^{*}(t)=\max _{s \in \mathbb{R}}\left\{s t-\log \left(\frac{\lambda}{\lambda-s}\right)\right\}
$$

By taking the derivative of $s t-\log \left(\frac{\lambda}{\lambda-s}\right)$ with respect to s and setting it equal to zero, we obtain that $\Lambda^{*}(t)$ is maximum at $s^{*}=\lambda-\frac{1}{t}$. Hence,

$$
\mathbb{P}\left(\left\{S_{n}>n t\right\}\right) \leq \exp (-n(\lambda t-1-\log (\lambda t)))
$$

Exercise 2*. a) Use part (ii) of the definition with $U \equiv 1$ (such a U belongs to G).
b) (i) $Z=\mathbb{E}(X)$ is constant and therefore \mathcal{G}-measurable; (ii) Let $U \in G: \mathbb{E}(X U)=\mathbb{E}(X) \mathbb{E}(U)=$ $\mathbb{E}(\mathbb{E}(X) U)=\mathbb{E}(Z U)$ (using the independence of X and U and the linearity of expectation).
c) (i) $Z=X$ is \mathcal{G}-measurable by assumption; (ii) Let $U \in G: \mathbb{E}(X U)=\mathbb{E}(Z U)$!
d) (i) $Z=\mathbb{E}(X \mid \mathcal{G}) Y$ is \mathcal{G}-measurable; (ii) Let $U \in G: \mathbb{E}(X Y U)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) Y U)$, because part (ii) of the definition of $\mathbb{E}(X \mid \mathcal{G})$ implies the previous equality (indeed, $Y U \in G)$. Therefore, $\mathbb{E}(X Y U)=\mathbb{E}(Z U)$.
e) Let us first check the left-hand side equality: $\mathbb{E}(X \mid \mathcal{H})$ is \mathcal{H}-measurable, therefore \mathcal{G}-measurable, so one can apply property c).

For the right-hand side equality, one has: (i) $Z=\mathbb{E}(X \mid \mathcal{H})$ is \mathcal{H}-measurable; (ii) Let $U \in H$:

$$
\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) U)=\mathbb{E}(\mathbb{E}(X U \mid \mathcal{G}))=\mathbb{E}(X U)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) U)=\mathbb{E}(Z U)
$$

using successively d), a) and the definition of $\mathbb{E}(X \mid \mathcal{H})$.

Exercise 3. a) We must check that $\mathbb{E}(\psi(Y) g(Y))=\mathbb{E}(X g(Y))$ for any continuous and bounded function g. The computation gives indeed:

$$
\mathbb{E}(\psi(Y) g(Y))=\sum_{y \in C} \psi(y) g(y) \mathbb{P}(\{Y=y\})=\sum_{x, y \in C} x g(y) \mathbb{P}(\{X=x, Y=y\})=\mathbb{E}(X g(Y))
$$

b) Let Y and Z be the two independent dice rolls: $\mathbb{P}(\{Y=i\})=\mathbb{P}(\{Z=j\})=0.25$ and $\mathbb{P}(\{Y=i, Z=j\})=\mathbb{P}(\{Y=i\}) \mathbb{P}(\{Z=j\})$. We therefore have $\mathbb{E}(\max (Y, Z) \mid Y)=\psi(Y)$, where

$$
\begin{aligned}
\psi(i) & =\sum_{j=i}^{4} \max (i, j) \mathbb{P}(\{\max (Y, Z)=j\} \mid\{Y=i\})=\sum_{j=i}^{4} \max (i, j) \frac{\mathbb{P}(\{\max (Y, Z)=j, Y=i\})}{\mathbb{P}(\{Y=i\})} \\
& =i \frac{\mathbb{P}(\{Z \leq i, Y=i\})}{\mathbb{P}(\{Y=i\})}+\sum_{j=i+1}^{4} j \frac{\mathbb{P}(\{Z=j, Y=i\})}{\mathbb{P}(\{Y=i\})}=i \mathbb{P}(\{Z \leq i\})+\sum_{j=i+1}^{4} j \mathbb{P}(\{Z=j\})
\end{aligned}
$$

So $\psi(1)=2.5, \psi(2)=2.75, \psi(3)=3.25$ and $\psi(4)=4$.

Exercise 4. a) Let us compute theoretically the first three MSE's:

$$
\begin{aligned}
\mathbb{E}\left(\left(\widehat{X}_{1}-X\right)^{2}\right) & =\mathbb{E}\left(\left(X+\frac{Z}{a}-X\right)^{2}\right)=\frac{\mathbb{E}\left(Z^{2}\right)}{a^{2}}=\frac{1}{a^{2}} \\
\mathbb{E}\left(\left(\widehat{X}_{2}-X\right)^{2}\right) & =\mathbb{E}\left(\left(\frac{a^{2} X+a Z}{a^{2}+1}-X\right)^{2}\right)=\mathbb{E}\left(\left(-\frac{1}{a^{2}+1} X+\frac{a}{a^{2}+1} Z\right)^{2}\right) \\
& =\frac{1}{\left(a^{2}+1\right)^{2}}+\frac{a^{2}}{\left(a^{2}+1\right)^{2}}=\frac{1}{a^{2}+1} \\
\mathbb{E}\left(\left(\widehat{X}_{3}-X\right)^{2}\right) & =\mathbb{E}\left(\left(\operatorname{sign}\left(a^{2} X+a Z\right)-X\right)^{2}\right)=4 Q(-|a|)
\end{aligned}
$$

where $Q(x)=\int_{-\infty}^{x} p_{Z}(z) d z$ is the cdf of $Z \sim \mathcal{N}(0,1)$. The fourth MSE is given by

$$
\mathbb{E}\left(\left(\widehat{X}_{4}-X\right)^{2}\right)=\mathbb{E}\left(\left(\tanh \left(a^{2} X+a Z\right)-X\right)^{2}\right)=1-\mathbb{E}\left(\tanh \left(a^{2}+a Z\right)^{2}\right)
$$

(see computation below in part c) for the last equality). This expression can be computed by numerical integration or by the Monte-Carlo method, as suggested in the problem set. The four MSE's are represented as functions of a on the figure below:

This shows that the fourth estimator gives the minimum MSE.
b) As we shall see below, the fourth estimator corresponds to the conditional expectation $\mathbb{E}(X \mid Y)$, which by definition minimizes $\mathbb{E}\left((Z-X)^{2}\right)$ among all random variables Z which are $\sigma(Y)$-measurable and square-integrable. The computation of the condition expectation gives $\mathbb{E}(X \mid Y)=\psi(Y)$, where

$$
\psi(y)=\sum_{x \in\{-1,+1\}} x \frac{p_{x} p_{Z}(y-a x)}{p_{Y}(y)}=\frac{p_{Z}(y-a)-p_{Z}(y+a)}{p_{Z}(y-a)+p_{Z}(y+a)}=\frac{e^{a y}-e^{-a y}}{e^{a y}+e^{-a y}}=\tanh (a y)
$$

which confirms that $\mathbb{E}(X \mid Y)=\tanh (a Y)=\widehat{X}_{4}$.
$N B$: The first expression for the function $\psi(y)$ above can be obtained either by reasoning intuitively (and forgetting that we are dealing here with a mix of discrete (X) and continuous (Y) random variables), or by proving formally that the random variable $\psi(Y)$ satisfies (similarly to Ex. 2.a):

$$
\mathbb{E}(X g(Y))=\mathbb{E}(\psi(Y) g(Y)), \quad \text { for every } g: \mathbb{R} \rightarrow \mathbb{R} \text { continuous and bounded }
$$

c) Using the following series of equalities:

$$
\begin{aligned}
\mathbb{E}\left((\mathbb{E}(X \mid Y)-X)^{2}\right) & =\mathbb{E}\left(X^{2}\right)+\mathbb{E}\left(\mathbb{E}(X \mid Y)^{2}\right)-2 \mathbb{E}(X \mathbb{E}(X \mid Y)) \\
& =\mathbb{E}\left(X^{2}\right)+\mathbb{E}\left(\mathbb{E}(X \mid Y)^{2}\right)-2 \mathbb{E}(\mathbb{E}(X \mathbb{E}(X \mid Y) \mid Y)) \\
& =\mathbb{E}\left(X^{2}\right)+\mathbb{E}\left(\mathbb{E}(X \mid Y)^{2}\right)-2 \mathbb{E}\left(\mathbb{E}(X \mid Y)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}\left(\mathbb{E}(X \mid Y)^{2}\right)
\end{aligned}
$$

we see that

$$
\mathbb{E}\left(\left(\widehat{X}_{4}-X\right)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}\left(\widehat{X}_{4}^{2}\right)=1-\mathbb{E}\left(\tanh (a Y)^{2}\right)=1-\mathbb{E}\left(\tanh \left(a^{2}+a Z\right)^{2}\right)
$$

(noticing for the last equality that the value of X can be replaced by +1 using symmetry). A direct computation shows that it also holds that $\mathbb{E}\left(\left(\widehat{X}_{2}-X\right)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}\left(\widehat{X}_{2}^{2}\right)=\frac{1}{a^{2}+1}$, but that the equality does not hold for \widehat{X}_{1} and \widehat{X}_{3}.

