Advanced Probability and Applications EPFL - Spring Semester 2022-2023
Solutions to Homework 8

Exercise 1. a) Let us compute first

1 /35 S
Bs) =3 (50 +5) =5

Assuming now that E(S,) = Sy (more precisely, that the expectation stays constant over n coin
tosses), let us compute E(Sy41):

E(Si1) = E(Sui|{X1 = +1) PUX1 = +1}) + E(Su [{X1 = —1) B({X; = ~1})
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Note: The computation is slightly unorthodox here, but we will see a cleaner way to prove this
later in the course.

b) Y, is the sum of n i.i.d. random variables, as the following computation shows:
Sh d X; - X;
Yn:10g<so>:log H(1—|—2 :ZIOg 1—&—7
7j=1 7=1
and these random variables are bounded, so by the central limit theorem,

Y,—n d
u =
\/ﬁo' n—00

where p = E(log(1 + X1/2)) = 3 (log(3/2) + log(1/2)) ~ —0.144 and

Z ~ N(0,1)

o? = Var(log(1 + X1/2)) = = (log(3/2)* + log(1/2)?) — u*> ~ 0.3

N | =

This is saying that for large n, we have
Y, ~ —0.144n 4+ v0.26n Z in particular: Yigo ~ —14.4+ 547
Therefore

P({S100 > S0/10}) = P({S100/S0 > 1/10}) = P({Y100 > — log(10))
~P ({Z > 43;:“}) —P({Z > 2.24})

which is roughly 1% (so you can imagine what P({S100 > So}) looks like ...).

Therefore, the process (S,, n > 1), unexpectedly perhaps, “crashes” to zero with high probability
as n gets large, even though it seemed a priori a “fair game” with constant expectation. This is
an important example among a large class of processes called “martingales”; we will come back to
this!



Note: The random process (S,, n > 1) is not unrelated to the following deterministic process
defined recursively as

T /2 if z,, is even

290 €EN*)  mpq =
0 i {3xn+1 if x,, is odd

in which an even number gets multiplied by 1/2 and an odd number gets approximately multiplied
by 3/2 (because it first gets multiplied by 3 and then necessarily divided by 2, as 3z, + 1 is even).
So if you consider that even and odd numbers appear naturally with probability 1/2, then the two
processes have something in common. But in the deterministic case, one has no proof that the
process ultimately reaches the value 1 as n gets large: this is the famous Collatz conjecture, which
remains unsolved until now.

Exercise 2*. a) let us compute E(S,) =37 E(X n)) =n2 = \and
(n )\ A 22
Vi g Var(X;7)=n— 1-—]=A——
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b) So p = lim,, o0 E(S,) = A and 02 = lim,, o, Var(S,) = \.

¢) Let us compute the characteristic function of S,,:

$s,(t) = E(exp(itS,)) = E(exp(it (X" + ... + X)) = E(exp(itX (™)) - - E(exp(it X))

_ v (n) (A AN L Al —1)\" it
= (IE(exp(ti1 ))) = <e . +1 n> = <1 + ) S &P (A" —1))
This limiting function is the characteristic function of Z ~ P()). Indeed, one can check that
- itk )‘ e it
b(t) = BlexplitZ)) = 3 e — exp(A (e — 1))
k>0 k>0

which allows us to conclude that S, é Z.

d) The computation of the characteristic function is similar here:

E () = (i it 4 <1 - 1)) o <1 + % (et — 1)) L e — 1)

n n—00

and leads actually exactly to the same result: 7, converges in distribution towards a Poisson
random variable Z of parameter \.

e) No, as each random variable S,, is constructed from a different set of random variables X f"), e Xfln),
which depends on n. The same holds for the random variables T;,.



