## Solutions to Homework 8

Exercise 1. a) Let us compute first

$$
\mathbb{E}\left(S_{1}\right)=\frac{1}{2}\left(\frac{3 S_{0}}{2}+\frac{S_{0}}{2}\right)=S_{0}
$$

Assuming now that $\mathbb{E}\left(S_{n}\right)=S_{0}$ (more precisely, that the expectation stays constant over $n$ coin tosses), let us compute $\mathbb{E}\left(S_{n+1}\right)$ :

$$
\begin{aligned}
\mathbb{E}\left(S_{n+1}\right) & =\mathbb{E}\left(S_{n+1} \mid\left\{X_{1}=+1\right\}\right) \mathbb{P}\left(\left\{X_{1}=+1\right\}\right)+\mathbb{E}\left(S_{n+1} \mid\left\{X_{1}=-1\right\}\right) \mathbb{P}\left(\left\{X_{1}=-1\right\}\right) \\
& =\frac{1}{2}\left(\mathbb{E}\left(S_{n+1} \left\lvert\,\left\{S_{1}=\frac{3 S_{0}}{2}\right\}\right.\right)+\mathbb{E}\left(S_{n+1} \left\lvert\,\left\{S_{1}=\frac{S_{0}}{2}\right\}\right.\right)\right)=\frac{1}{2}\left(\frac{3 S_{0}}{2}+\frac{S_{0}}{2}\right)=S_{0}
\end{aligned}
$$

Note: The computation is slightly unorthodox here, but we will see a cleaner way to prove this later in the course.
b) $Y_{n}$ is the sum of $n$ i.i.d. random variables, as the following computation shows:

$$
Y_{n}=\log \left(\frac{S_{n}}{S_{0}}\right)=\log \left(\prod_{j=1}^{n}\left(1+\frac{X_{j}}{2}\right)\right)=\sum_{j=1}^{n} \log \left(1+\frac{X_{j}}{2}\right)
$$

and these random variables are bounded, so by the central limit theorem,

$$
\frac{Y_{n}-n \mu}{\sqrt{n} \sigma} \underset{n \rightarrow \infty}{\xrightarrow{d}} Z \sim \mathcal{N}(0,1)
$$

where $\mu=\mathbb{E}\left(\log \left(1+X_{1} / 2\right)\right)=\frac{1}{2}(\log (3 / 2)+\log (1 / 2)) \simeq-0.144$ and

$$
\sigma^{2}=\operatorname{Var}\left(\log \left(1+X_{1} / 2\right)\right)=\frac{1}{2}\left(\log (3 / 2)^{2}+\log (1 / 2)^{2}\right)-\mu^{2} \simeq 0.3
$$

This is saying that for large $n$, we have

$$
Y_{n} \simeq-0.144 n+\sqrt{0.26 n} Z \quad \text { in particular: } \quad Y_{100} \simeq-14.4+5.4 Z
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left(\left\{S_{100}>S_{0} / 10\right\}\right) & =\mathbb{P}\left(\left\{S_{100} / S_{0}>1 / 10\right\}\right)=\mathbb{P}\left(\left\{Y_{100}>-\log (10)\right)\right. \\
& \simeq \mathbb{P}\left(\left\{Z>\frac{-2.3+14.4}{5.4}\right\}\right)=\mathbb{P}(\{Z>2.24\})
\end{aligned}
$$

which is roughly $1 \%$ (so you can imagine what $\mathbb{P}\left(\left\{S_{100}>S_{0}\right\}\right)$ looks like $\ldots$ ).
Therefore, the process ( $S_{n}, n \geq 1$ ), unexpectedly perhaps, "crashes" to zero with high probability as $n$ gets large, even though it seemed a priori a "fair game" with constant expectation. This is an important example among a large class of processes called "martingales"; we will come back to this!

Note: The random process $\left(S_{n}, n \geq 1\right)$ is not unrelated to the following deterministic process defined recursively as

$$
x_{0} \in \mathbb{N}^{*}, \quad x_{n+1}= \begin{cases}x_{n} / 2 & \text { if } x_{n} \text { is even } \\ 3 x_{n}+1 & \text { if } x_{n} \text { is odd }\end{cases}
$$

in which an even number gets multiplied by $1 / 2$ and an odd number gets approximately multiplied by $3 / 2$ (because it first gets multiplied by 3 and then necessarily divided by 2 , as $3 x_{n}+1$ is even). So if you consider that even and odd numbers appear naturally with probability $1 / 2$, then the two processes have something in common. But in the deterministic case, one has no proof that the process ultimately reaches the value 1 as $n$ gets large: this is the famous Collatz conjecture, which remains unsolved until now.

Exercise 2*. a) let us compute $\mathbb{E}\left(S_{n}\right)=\sum_{j=1}^{n} \mathbb{E}\left(X_{j}^{(n)}\right)=n \frac{\lambda}{n}=\lambda$ and

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}^{(n)}\right)=n \frac{\lambda}{n}\left(1-\frac{\lambda}{n}\right)=\lambda-\frac{\lambda^{2}}{n}
$$

b) So $\mu=\lim _{n \rightarrow \infty} \mathbb{E}\left(S_{n}\right)=\lambda$ and $\sigma^{2}=\lim _{n \rightarrow \infty} \operatorname{Var}\left(S_{n}\right)=\lambda$.
c) Let us compute the characteristic function of $S_{n}$ :

$$
\begin{aligned}
\phi_{S_{n}}(t) & =\mathbb{E}\left(\exp \left(i t S_{n}\right)\right)=\mathbb{E}\left(\exp \left(i t\left(X_{1}^{(n)}+\ldots+X_{n}^{(n)}\right)\right)\right)=\mathbb{E}\left(\exp \left(i t X_{1}^{(n)}\right)\right) \cdots \mathbb{E}\left(\exp \left(i t X_{n}^{(n)}\right)\right) \\
& =\left(\mathbb{E}\left(\exp \left(i t X_{1}^{(n)}\right)\right)\right)^{n}=\left(e^{i t} \frac{\lambda}{n}+1-\frac{\lambda}{n}\right)^{n}=\left(1+\frac{\lambda\left(e^{i t}-1\right)}{n}\right)^{n} \underset{n \rightarrow \infty}{\rightarrow} \exp \left(\lambda\left(e^{i t}-1\right)\right)
\end{aligned}
$$

This limiting function is the characteristic function of $Z \sim \mathcal{P}(\lambda)$. Indeed, one can check that

$$
\phi_{Z}(t)=\mathbb{E}(\exp (i t Z))=\sum_{k \geq 0} e^{i t k} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{k \geq 0} \frac{\left(\lambda e^{i t}\right)^{k}}{k!}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

which allows us to conclude that $S_{n} \xrightarrow[n \rightarrow \infty]{d} Z$.
d) The computation of the characteristic function is similar here:

$$
\mathbb{E}\left(e^{i t T_{n}}\right)=\left(\frac{1}{n} e^{i t}+\left(1-\frac{1}{n}\right)\right)^{\lceil\lambda n\rceil}=\left(1+\frac{1}{n}\left(e^{i t}-1\right)\right)^{\lceil\lambda n\rceil} \underset{n \rightarrow \infty}{\rightarrow} \exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

and leads actually exactly to the same result: $T_{n}$ converges in distribution towards a Poisson random variable $Z$ of parameter $\lambda$.
e) No, as each random variable $S_{n}$ is constructed from a different set of random variables $X_{1}^{(n)}, \ldots, X_{n}^{(n)}$, which depends on $n$. The same holds for the random variables $T_{n}$.

