Homework 9

Exercise 1. Let ($m_{k}, k \geq 0$) be the sequence of moments of a generic random variable X.
a) Let $\ell \geq k \geq 0$. Show that if $\mathbb{E}\left(|X|^{\ell}\right)<+\infty$ (i.e., if m_{ℓ} is well-defined and finite), then it also holds that $\mathbb{E}\left(|X|^{k}\right)<+\infty$.
Note: The reciprocal statement is that if $\ell \geq k \geq 0$ and $\mathbb{E}\left(|X|^{k}\right)=+\infty$, then $\mathbb{E}\left(|X|^{\ell}\right)=+\infty$.
b) Show that the growth of the odd moments is controlled by the growth of the even moments.
c) Show that if X is bounded, then Carleman's condition is satisfied:

$$
\sum_{k \geq 1} m_{2 k}^{-\frac{1}{2 k}}=+\infty
$$

Exercise 2. a) Let $X \sim \mathcal{N}(0,1)$. Compute all the moments of the random variable $Y=\exp (X)$.
b) Let W be the discrete random variable such that

$$
\mathbb{P}(\{W=j\})=C \exp \left(-j^{2} / 2\right), \quad j \in \mathbb{Z}
$$

where $C=1 / \sum_{j \in \mathbb{Z}} \exp \left(-j^{2} / 2\right)$. Compute all the moments of the random variable $Z=\exp (W)$.
c) What can you conclude from parts a) and b)?

Exercise 3*. Let X be a $\mathcal{N}\left(0, \sigma^{2}\right)$ random variable, with $\sigma>0$.
a) Using integration by parts, show that for any continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that there exists $C>0$ and $n \geq 1$ with $|f(x)|,\left|f^{\prime}(x)\right| \leq C\left(1+x^{2}\right)^{n}$ for every $x \in \mathbb{R}$, we have

$$
\mathbb{E}(X \cdot f(X))=\sigma^{2} \mathbb{E}\left(f^{\prime}(X)\right)
$$

Note: The above condition is needed to ensure that both expectations are finite.
b) Use part a) to compute $\mathbb{E}\left(X^{k}\right)$ for $k \in \mathbb{N}$.

Let now $m \geq 1$ and $Y=X^{m}$.
c) For which values of $m \geq 1$ and $\sigma>0$ does it hold that the distribution of Y is entirely determined by its moments? (Hint: use Stirling's approximation: $k!\simeq k^{k} e^{-k}$).

Exercise 4. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. non-negative random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that there exists $0<a<b<+\infty$ with $a<X_{n}(\omega) \leq b$ for all $n \geq 1$ and $\omega \in \Omega$. Let also ($Y_{n}, n \geq 1$) be the sequence defined as

$$
Y_{n}=\left(\prod_{j=1}^{n} X_{j}\right)^{1 / n}, \quad n \geq 1
$$

a) Show that there exists a constant $\mu>0$ such that $Y_{n} \underset{n \rightarrow \infty}{\rightarrow} \mu$ almost surely.
b) Compute the value of μ in the case where $\mathbb{P}\left(\left\{X_{1}=a\right\}\right)=\mathbb{P}\left(\left\{X_{1}=b\right\}\right)=\frac{1}{2}$ and $a, b>0$.
c) In this case, look for the tightest possible upper bound on $\mathbb{P}\left(\left\{Y_{n}>t\right\}\right)$ for $n \geq 1$ fixed and $t>\mu$.

Hint. You have two options here. One is to use Chebyshev's inequality with the function $\psi(x)=x^{p}$ and $p>0$ (and then optimize over p) in order to upperbound

$$
\mathbb{P}\left(\left\{Y_{n}>t\right\}\right)=\mathbb{P}\left(\left\{\prod_{j=1}^{n} X_{j}>t^{n}\right\}\right)
$$

for $t>\mu$. The other option is left to your imagination...

