
Advanced Probability and Applications EPFL - Spring Semester 2022-2023
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Exercise 1. a) Using Jensen’s inequality and the fact that the map x 7→ x`/k is convex for ` ≥ k,
we obtain

E(|X|`) = E
(

(|X|k)`/k
)
≥ (E(|X|k))`/k

which leads to the result.

b) Two options here: i) By Cauchy-Schwarz’ inequality, we obtain

|m2k+1| ≤ E(|X|2k+1) = E(|X|k |X|k+1) ≤
√

E(X2k)E(X2k+2) =
√
m2km2k+2

ii) Using the inequality |a| ≤ 1+a2

2 , we obtain

|m2k+1| ≤ E(|X|2k+1) ≤ 1

2
(E(|X|2k) + E(|X|2k+2)) =

m2k +m2k+2

2

c) Saying that X is bounded amounts to saying that there exists C > 0 such that |X(ω)| ≤ C for
all ω ∈ Ω, so |mk| ≤ E(|X|k) ≤ E(Ck) = Ck. Therefore,∑

k≥1
m
− 1

2k
2k ≥

∑
k≥1

(C2k)−
1
2k =

∑
k≥1

1

C
= +∞

which proves the claim.

Exercise 2. a) We have

mk = E(Y k) = E(exp(kX)) =
1√
2π

∫
R
ekx exp(−x2/2) dx =

1√
2π

ek
2/2

∫
R
e−(x−k)

2/2 dx = ek
2/2.

b) We have

mk = E(Zk) = E(exp(kW )) = C
∑
j∈Z

ejk e−j
2/2 = C ek

2/2
∑
j∈Z

e−(j−k)
2/2 = ek

2/2

c) So all the moments of Y and Z are identical, even though these two random variables clearly
do not have the same distribution (one being continuous and the other being discrete). One can
check indeed that the sequence of moments (mk, k ≥ 0) does not satisfy Carleman’s condition, as∑

k≥1
m
− 1

2k
2k =

∑
k≥1

e−k < +∞

Exercise 3*. a) Using integration by parts (with u(x) = f(x) and v′(x) = x exp(−x2/2σ2)), we
obtain:

E(X · f(X)) =
1√

2πσ2

∫
R
x f(x) exp(−x2/2) dx =

σ2√
2πσ2

∫
R
f ′(x) exp(−x2/2) dx = σ2 E(f ′(X))

(The assumptions made imply indeed that the boundary terms at ±∞ vanish, as an exponential
decrease wins over a polynomial increase).
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b) Using the above relation with f(x) = xk−1, we obtain for k ≥ 2:

E(Xk) = σ2 (k − 1)E(Xk−2)

As E(X1) = 0, this implies that all odd moments equal zero (but this could also be directly deduced
from the fact that for k odd, the function under the integral sign is odd). For the even moments,
we obtain (using E(X0) = 1):

E(Xk) = σ2k (k − 1) (k − 3) · · · 3 · 1 = σk (k − 1)!! = σk
k!

2k/2 (k/2)!

c) Let us compute (using Stirling’s approximation):

m2k = E(Y 2k) = E(X2mk) = σ2mk
2mk!

2mk (mk)!
' σ2mk (2mk)2mk e−2mk

(2mk)mk e−mk

= σ2mk (2mk)mk e−mk

so m
−1/(2k)
2k ' σ−m (2mk)−m/2 em/2 and therefore, Carleman’s condition:∑

k≥1
m
−1/(2k)
2k ' σ−m (2m)−m/2 em/2

∑
k≥1

k−m/2 = +∞

is satisfied if and only if m ≤ 2 (σ > 0 does not play a role here).

Exercise 4. a) Consider

log(Yn) =
1

n

n∑
j=1

log(Xj)

As log(Xj) are i.i.d. bounded random variables, the strong law of large numbers applies, so

1

n

n∑
j=1

log(Xj) →
n→∞

E(log(X1)) almost surely

so µ = exp(E(log(X1))).

b) In this case E(log(X1)) = log(a)+log(b)
2 , so µ =

√
ab.

c) Observing that log(Xj) ∈ [log(a), log(b)] and using (the generalized version of) Hoeffding’s
inequality, we obtain

P({Yn ≥ t}) = P({log(Yn)− log(µ) ≥ log(t)− log(µ)}) ≤ exp

(
−2n (log(t)− log(µ))2

(log(b)− log(a))2

)
so P({Yn ≥ t}) ≤ Cn for every t > µ =

√
ab, and a possible value for C is exp(−2 (log(t)−log(µ))2

(log(b)−log(a))2 )

(note that the same result may be obtained by a direct computation and the use of the inequality
cosh(x) ≤ exp(x2/2)).

And a weaker result can be obtained also via the inequality

P({Yn ≥ t}) ≤
E(Y n

n )

tn
=

(
E(X1)

t

)n
=

(
a+ b

2t

)n
which shows only that concentration holds for every t > a+b

2 (and not t > µ).
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