Frontiers in Chemical Synthesis I Sustainable Chemistry

Seminar Program May 11, Zoom May 13, Zoom

	Speaker	Title					
May 11, 2020, Zoom: <u>https://epfl.zoom.us/j/99900310067</u>							
Session I: (Chair: Stephanie Amos)							
8h15-9h15	John Reed	Use of Electrochemistry in Total Synthesis					
9h15-10h15	Raphael Simonet-Davin	Enantioselective Radical Reactions via Transition Metal Catalysis					
10h15-11h15	Annabell Martin	Catalytic Cascade Reactions by Radical Relay					
May 11, 2020, Zoom: <u>https://epfl.zoom.us/j/94781408031</u>							
Session II: (Chair: John Reed)							
13h15-14h15	Alexandre Leclair	Recent Advances in Iron-Catalyzed Cross Coupling Reactions					
14h15-15h15	Stephanie Amos	Enantioselective syntheses and transformations of Cyclopropyl Ketones					
May 13, 2020, Zoom: <u>https://epfl.zoom.us/j/97639831812</u>							
Session III: (Chair: Alexandre Leclair)							
9h15-10h15	Anastasia Gitlina	Acid-Mediated Hydroaminomethylation					
10h15-11h15	Abhyankar Kedar	Gold-catalyzed C-C bond forming reactions of non-activated olefins					

Modernising Total Synthesis through Electrochemistry

Frontiers in Chemical Synthesis: Towards Sustainable Chemistry

Ecole Polytechnique Fédérale de Lausanne Laboratory of Asymmetric Catalysis and Synthesis (LCSA)

Organic Synthetic Electrochemistry

Battery (or other power source) generates a *potential difference*, measured in volts (V)
The potential difference drives a *current*, measured in amps (A), through the wire
Electrons flow from *anode* to *cathode*, resulting in charge accumulation
If potential difference is large enough for the particular substrate, electron transfer can occur

Organic Synthetic Electrochemistry

Redox potentials (*E*₀):

A measure of the potential difference needed to oxidise or reduce a compound or functional group

Common reduction potentials (vs SCE)					
$F_2 + 2 \ e^{\scriptscriptstyle -} \rightarrow 2 \ F^{\scriptscriptstyle -}$	+2.87 V				
$CI_2 + 2 \ e^{\scriptscriptstyle -} \rightarrow 2 \ CI^{\scriptscriptstyle -}$	+1.36 V				
$Pd^{2+} + 2 e^{-} \rightarrow Pd(0)$	+0.92 V				
$Ni^{2+} + 2 e^{-} \rightarrow Ni(0)$	-0.28 V				
$Zn^{2+} + 2 e^{-} \rightarrow Zn(0)$	-0.76 V				
$\begin{array}{c} Ca^{2+} + 2 \ \mathrm{e}^{-} \rightarrow \\ Ca(0) \end{array}$	-2.87 V				
$Li^+ \rightarrow Li(0)$	-3.05 V				

Experimentally determined using cyclic voltammetry

Reliable for inorganic substrates

Cyclic voltammetry:

Potential, V vs Ag/AgNO3

*E*⁰ is given by the average of the oxidative (anodic) and reductive (cathodic) *peak potentials*

Reversible oxidation/reduction necessary!!!

Problematic for organic substrates

Organic Synthetic Electrochemistry

Single electron oxidations/reductions of organic compounds often lead to unstable intermediates with downstream reactivity

Irreversibility prevents meaningful CV data

Nicewicz has argued that *half-peak potentials* offer close estimates to the true value

Technical Aspects

Anode/Cathode Materials:

- Electron transfer occurs at surface
- Different materials have different potential ranges
- Sacrifical anodes can be used when reduction is desired

	Surface Area	Cost/unit	
RVC foam	High	€26	
graphite	Low	€ 185	
Ni foam	High	€ 12.5	
Pt	Low	€ 621	
VV	Low	€ 355	
BDD	Low	€ 552	
Zn	Low	€ 53	

Electrolyte:

- Source of positive and negative ions
- Carries charge through reaction medium
- Increases conductivity of reaction medium
 - Forms an ion layer around electrodes, affecting substrate diffusion

- Li⁺ and *n*Bu₄N⁺ are common cations: good solubility and chemical inertness
- CIO⁴⁻ is a common anion: cheap and inert

Solvent:

- Higher dielectric constant = higher conductivity (lower resistance)
- Protic solvents and CH₂Cl₂ can serve as sacrificial reductants when anodic oxidation is desired
 - Choice of solvent affects working potential range

Single Cell vs Split Cell:

Split Cell:

- Higher resistance
- More complicated set-up
- Less undesired reactivity

Electrochemistry in Total Synthesis

Anodic Oxidations:

• Oxidative Decarboxylation (Kolbe Reaction)

Arene Oxidation

• C=C Bond Oxidation

• C(*sp*³)–H Oxidation

• N–H Bond Oxidation

Cathodic Reductions:

C=O Reduction

• C=N Reduction

Redox Paired Transformations:

e-Amination

Radical Cation Diels-Alder

Oxidative Decarboxylation (Kolbe Reaction)

1) H. Kolbe, *Ann. der Chem. & Pharm.* **1848**, *64*, 339 2) E. J. Corey and R. R. Sauers, *J. Am. Chem. Soc.* **1959**, *81*, 1739

Oxidative Decarboxylation (Kolbe Reaction)

- Reduction of step count by 2
- Obviates the need for tin reagents
- More flexible choice of coupling reagent

Arene Oxidation

Tobinaga, 1973¹

Arene Oxidation

Arene Oxidation

Arene Oxidation

Nishiyama

Arene Oxidation

Chiba, 1998¹

DDQ as redox mediator:

- Oxidises substrate
- Then reoxidised by anode

Arene Oxidation

Harran, 2015¹

35 % (43 % brsm) 2.7:1 *dr*

OH

HO

C=C Oxidation

Moeller, 2004¹

C=C Oxidation

Rossen (Merck), 1997¹

C(*sp*³)–H Oxidation

N–H Oxidation

Baran, 2014¹

Cathodic Reduction

C–X Reduction

Scheffold, 1990¹

Cathodic Reduction

C=O Reduction

Little, 1990¹

Cathodic Reduction

C=N Reduction

Shono, 1978-811-3

- 1) Shono et al. Tet. Lett. 1978, 48, 4819
- 2) Shono et al. Tet. Lett. **1980**, 50, 3073
- 3) Shono et al. Tet. Lett. 1981, 51, 2385

Redox Paired

e-Amination

Baran, 2019¹

Redox Paired

Radical Cation Diels-Alder Reaction

Moses, 2014¹

Conclusions

Wide Variety of Transformations

Conditions Tailored to the Substrate

- Redox potentials can be used to indicate potential reaction pathways
- Choice of materials for the electrodes, solvent and electrolyte

Stoichiometric Oxidants/Reductants Avoided

• Atom economic electron transfer

Further Promotion/Education Needed!

• Electrochemistry still remains a niche option

Questions

Explain the formation of the side-product:

Why is a split cell setup necessary for this transformation?

Enantioselective Radical Reactions via Transition Metal Catalysis

PhD within LCSO at EPFL under the supervision of **Prof. Jérôme WASER**

> Simonet-Davin Raphaël 11/05/2020 - Frontiers

Metals Considered

EPFL

Frontiers 2020

Historical Background

1981, Osaka University, Japan

[(-)-diop]RhCl—Catalyzed Asymmetric Addition of Bromotrichloromethane to Styrene

By Shinji Murai, Ryoji Sugise, and Noboru Sonoda^(*)

Although a number of asymmetric reactions catalyzed by transition metal complexes to form C--H, C--C, C--Si, and C--O bonds with creation of chirality have been reported^[1], no reactions of this type which lead to the formation of chiral carbon-halogen bonds have been reported^[2] to the best of our knowledge. We describe here the first example of an asymmetric reaction, catalyzed by a chiral transition metal complex, in which the chiral center is formed as a result of carbon-bromine bond formation.

The reaction of bromotrichloromethane with styrene in 2:1 ethanol-benzene, in the presence of an optically active phosphane-rhodium complex $[(-)-\text{diop}]RhCl^{[3]}$ (0.30 mmol) at 80°C for 18 h, gave the 1:1-adduct (1) in 26% yield. The adduct (1) showed an optical rotation of $[\alpha]_D = -22.5$ (c = 10.7, C_6H_6) which corresponded to > 32% enantiometric excess and (S)-configuration.

The enantiomeric excess and the absolute configuration were determined in the following way using a sample of (1) with $[\alpha]_D = -11.3^\circ$ (c=10.3, C_6H_6) obtained in a separate run. This sample was treated with an excess of NaN₃ to give the azide (2), which was not isolated but directly reduced with LiAlH₄ to (R)-(+)-1-phenyl-1-propylamine (3) which showed $[\alpha]_D = +3.43$ (c=8.4, C_6H_6) and corresponded to an optical purity of $16\%^{[4]}$. Thus, the adduct (S)-(-)-(1) with $[\alpha]_D = -22.5$ corresponds to > 32% enantiomeric excess. It should be noted that the optical purity must be much higher than 32%, since $S_N 2$ displacement of (1) with NaN₃ may involve partial racemization^[5].

Since various transition metal catalysts for addition of organic halides to olefins are known^[6] and a variety of chiral ligands are now available^[1], the present result opens up new possibilities for asymmetric synthesis.

Murai, S.; Sugise, R.; Sonoda, N. Angew. Chem. Int. Ed. Engl. 1981, 20, 475
 Kameyama, M.; Kamigata, N.; Bull. Chem. Soc. Jpn. 1989, 62, 648
 To go further: Sibi, M. P.; Manyem, S.; Zimmerman, J. Enantioselective Radical Processes Chem. Rev. 2003, 103, 3263

Frontiers 2020

Addition of CX₄ Reagents to Olefins

Addition of CX₄ Reagents to Olefins

Addition of CX₄ Reagents to Olefins

One Catalyst – Two Processes

Entry	EWG	Ar	3 , Yield ^{b} , ee ^{c}	4, Yield ^{b} , ee ^{c}	
1	CN	C_6H_5	3a , 85%, 96% ee	4a , 92%, 85% ee	
2	CN	$4-MeC_6H_4$	3a , 68%, 96% ee	4 b , 70%, 79% ee	
3	CN	$4-BrC_6H_4$	3a , 81%, 97% ee	4c, 88%, 80% ee	O ∆- RhO (8.0 mol%)
4	CN	$4-CF_3C_6H_4$	3a, 78%, 95% ee	4d, 78%, 76% ee	HE-1 (1.5 equiv)
5	CN	$2-MeC_6H_4$	3a, 71%, 95% ee	4e, 72%, 86% ee	DMP R 1,4-dioxane DI
6^d	CN	2,4,6-Me ₃ C ₆ H ₂	3a, 57%, 94% ee	4f, 60%, 89% ee	
7^d	CN	2-Naphthyl	3a, 82%, 94% ee	4g, 88%, 83% ee	R = Et, 1b, r.t. 37, 82%
8^d	CN	1-Naphthyl	3a, 78%, 91% ee	4h, 84%, 80% ee	R = nPr, 1c, 35 °C 3g, 78%
9	COOEt	C ₆ H ₅	3b , 65%, 94% ee	4a, 68%, 84% ee	R = 3, 1d, 35 °C 3h, 61%
10^d	COOEt	$4-MeOC_6H_4$	3b , 65%, 92% ee	4i, 63%, 81% ee	
11^d	3 0 +3	C_6H_5	3c , 60%, 92% ee	4a , 69%, 82% ee	
12^d	× ~ ~	C ₆ H ₅	3d , 62%, 92% ee	4a , 72%, 83% ee	1a + F F A A-RhO (8.0 mo HE-1 (1.5 equ
13^d	2 0 H3 N(Phth)	C_6H_5	3e , 73%, 92% ee	4a , 78%, 82% ee	F 5 SU2Ph 1,4-dioxane, 1

^{*a*} Reaction conditions: **1a** (0.20 mmol), **2** (0.10 mmol), Δ -**RhO** (0.008 mmol) and **HE-1** (0.15 mmol) in 1,4-dioxane (1.0 mL) were stirred at room temperature and irradiated with a 21 W CFL. ^{*b*} Isolated yields. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} 35 °C.

54% yield; 93% ee

7

81% ee

One Catalyst – Two Processes

Huang, X.; Luo, S.; Burghaus, O.; Webster, R. D.; Harms, K.; Meggers, E. Chem. Sci. 2017, 8, 7126

Radical-Polar Crossover Reactions

Radical-Polar Crossover Reactions

Zhang, X.; Wu, W.; Cao, W.; Yu, H.; Xu, X.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2020, 59, 4846
Nickel * Ni 58.69 28

Difluoroalkylation of β-Ketoesters

Liu, J.; Ding, W.; Zhou, Q.-Q.; Liu, D.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2018, 20, 461

Difluoroalkylation of β-Ketoesters

Ring-Opening Cyanation of Oxime

Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2019, 21, 9763

Ring-Opening Cyanation of Oxime

Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2019, 21, 9763

Ring-Opening Cyanation of Oxime

Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2019, 21, 9763

C(sp³)–H Alkylation for Indoline

C(sp³)–H Alkylation for Indoline

Enone Acylation and Alkylation

Zhang, K.; Lu, L.-Q.; Jia, Y.; Wang, Y.; Lu, F.-D.; Pan, F.; Xiao, W.-J. Angew. Chem. Int. Ed. 2019, 58, 13375

Enone Acylation and Alkylation

Frontiers 2020

Conclusion

Exercice 1

? catalyzed radical relay for enantioselective cyanation of cyclopropanols

1/ Propose a metal/ligand for this reaction2/ Propose a CN source3/ Propose the missing intermediates

Exercice 2

1/ Propose a metal/ligand for this reaction 2/ Propose a product for the MRC 3/ Propose the missing intermediates

Frontiers 2020 Hu, Y.; Lang, K.; Li, C.; Gill, J. B.; Kim, I.; Lu, H.; Fields, K. B.; Marshall, M.; Cheng, Q.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2019, 141, 18160

Outlook - Beyond Metals

Thank you for your attention!

Stay safe

Catalytic Cascade Reactions by Radical Relay

CH-707 Frontiers in Organic Chemistry I

Annabell Martin Laboratory of Chemical and Biological Probes (LOCBP) Supervisor: Prof. Rivera-Fuentes 11.05.2020

H.-M. Huang, M. H. Garduño-Castro, C. Morrill, D. J. Procter, *Chem. Soc. Rev.* **2019**, *48*, 4626–4638

Outline

1. Introduction

- * (Radical) Cascade Reactions
- * Radical Relay
- 2. Examples
 - * Intramolecular Radical Relays
 - * Radical Relays involving Hydrogen Atom Transfer (HAT)
 - * Intermolecular Radical Relays
- 3. Summary Strategies for radical formation, relocation and rebound
- 4. Outlook

Cascade/Domino Reactions: a process involving two or more consecutive reactions in

which subsequent reactions result as a consequence of the

functionality formed by bond formation or fragmentation in

the previous step

- \rightarrow each reaction composing the sequence occurs spontaneously
- \rightarrow no isolation of intermediates
- \rightarrow same reaction conditions throughout the consecutive cascade steps
- \rightarrow no addition of reagents after the initial step

vs

One-pot Reactions: a process in which another reagent, mediator or catalyst is added after the first transformation without isolation of the first formed product

- \rightarrow any cascade reaction = one-pot reaction
- \rightarrow any one-pot reaction \neq cascade reaction

L. F. Tietze, U. Beifuss, Angew. Chem. Int. Ed. 1993, 32, 131-163

R. Robinson, J. Chem. Soc. 1917, 762–768

First example: Synthesis of Tropinone (Robinson, 1917) 2⊕ Ca ⊖ 000 ⊖ 000. CHO, + H₂N-Me 1) Condensation (2x) CHO 2) Intermolecular Mannich 3) Intramolecular Mannich HCI Δ Ο Ν CO₂H OH ۰ H . ⊙⊖ ∕N-Me **,**0⊝ Ś Έ HO₂C \cap Ó

R. Robinson, J. Chem. Soc. 1917, 762–768

W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem. Soc. 1971, 93, 4332-4334

W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem. Soc. 1971, 93, 4332-4334

Introduction – Radical Cascade Reactions

Total synthesis of (+/-)-Hirsutene (Curran, 1985) - Key step constitutes a radical

D. P. Curran, M.-H. Chen, *Tetrahedron Lett.* **1985**, *26*, 4991–4994

Introduction – Radical Cascade Reactions

Total synthesis of (+/-)-Hirsutene (Curran, 1985)

D. P. Curran, M.-H. Chen, Tetrahedron Lett. 1985, 26, 4991–4994

Introduction – Radical Cascade Reactions

Achieving rapid complexity in total syntheses of natural products and complex materials:

stoichiometric amounts of reagents and/or additives required to mediate these strategies

M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692–12714

Definition: redox-neutral process in which radical character is re-generated and thus

(by Procter) only a catalytic amount of radical-generating reagent is required

3 key stages: 1) Radical Formation: Radical character is generated by SET or addition of radical

2) Radical Relocation: Radical character is propagated during a bond-forming / breaking sequence

3) Radical Rebound: Radical character is recycled, typically by SET back to metal catalyst or expulsion of a radical that acts as a catalyst

H.-M. Huang, M. H. Garduño-Castro, C. Morrill, D. J. Procter, Chem. Soc. Rev. 2019, 48, 4626-4638

Cu(I)-catalyzed cascade synthesis of pyrrolines (Aubé 1992)

J. Aubé, X. Ping, Y. Wang, F. Takusagawa, J. Am. Chem. Soc. 1992, 114, 5466–5467

Cu(I)-catalyzed cascade synthesis of pyrrolines (Aubé 1992)

QUESTION:Why does the diastereoisomeric oxaziridine lead to an azirineinstead of the pyrroline?

J. Aubé, X. Ping, Y. Wang, F. Takusagawa, J. Am. Chem. Soc. 1992, 114, 5466–5467

Cu(I)-catalyzed cascade synthesis of pyrrolines (Aubé 1992)

J. Aubé, X. Ping, Y. Wang, F. Takusagawa, J. Am. Chem. Soc. 1992, 114, 5466–5467

Ti(III)-catalyzed cascade synthesis of dihydropyrrolizine scaffolds (Gansäuer 2016)

S. Hildebrandt, A. Gansäuer, Angew. Chem. Int. Ed. 2016, 55, 9719–9722

Co(II)-catalyzed enantioselective cascade synthesis of cyclopropanes (Zhang 2011)

X. Xu, H. Lu et al., J. Am. Chem. Soc. 2011, 133, 15292–15295
Examples – Intramolecular Radical Relays

Co(II)-catalyzed enantioselective cascade synthesis of cyclopropanes (Zhang 2011)

X. Xu, H. Lu et al., J. Am. Chem. Soc. 2011, 133, 15292–15295

Examples – Intramolecular Radical Relays

Co(II)-catalyzed enantioselective cascade synthesis of cyclopropanes (Zhang 2011)

X. Xu, H. Lu et al., J. Am. Chem. Soc. 2011, 133, 15292–15295

Examples – Intramolecular Radical Relays

Sm(II)-catalyzed cyclization cascade (Procter 2019)

H.-M. Huang, J. J. W. McDouall, D. J. Procter, Nat. Catal. 2019, 2, 211-218

Examples – Radical Relays involving HAT

Ir(III)-catalyzed cascade reaction (Knowles and Rovis, 2016)

G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, *Nature* **2016**, *539*, 268–271 J. C. K. Chu, T. Rovis, *Nature* **2016**, *539*, 272–275

Examples – Intermolecular Radical Relays

Cu(I)-catalyzed multicomponent coupling (Xiao and Chen, 2018)

X. Y. Yu, Q. Q. Zhao, J. Chen, J. R. Chen, W. J Xiao, Angew. Chem. Int. Ed. 2018, 57, 15505–15509

Examples – Intermolecular Radical Relays

J. J. Murphy D. Bastida, S. Paria, M. Fagnoni, P. Melchiorre, Nature 2016, 532, 218–222

Examples – Intermolecular Radical Relays

L. A. Perego, P. Bonilla, P. Melchiorre, Adv. Synth. Catal. 2020, 362, 302-307

Summary – Cascade Reactions by Radical Relay

lr

Sm

Strategies for radical formation:

- Cleavage of a weak bond by reductive SET from a low valent metal
- 2. Fragmentation of a strained ring system
- Capture of a carbene by a low valent metal catalyst
- Fragmentation promoted by visible light

Strategies for radical relocation:

- Driven by release of ring strain
- Hydrogen Atom Transfer (HAT)
- 3. Conjugate Addition

Following the Baldwin Rules

Strategies for radical rebound:

- Homolytic substitution (at oxygen)
- Intramolecular electrontransfer to regenerate the catalyst
- Radical addition to a metal enolate

Enantioselective Radical Relays

Metal-free Radical Relays using organocatalysts

Mn

Fe

Rh

Outlook

 (radical) cascades as versatile tools for the construction of complex, molecular architectures

* high sustainability: atom-economic

energy-efficient

waste minimization (only catalytic amounts)

* challenging starting materials – strained ring systems, diazo-compounds etc.

Can more general starting materials serve as an input? Can general design principles be developed to upgrade any radical process to a catalytic

relay process?

Thank you very much for your attention!

ISIC - LSPN

Recent advances in iron-catalyzed cross-coupling reactions

CH-707: Frontiers in Chemical Synthesis -Towards Sustainable Chemistry

11.05.2020

Alexandre Leclair

Books:

M. Nakamura et al., in Org. React., American Cancer Society, 2014, pp. 1–210.

E. Bauer, Ed., Iron Catalysis II, Springer International Publishing, Cham, 2015.

Reviews:

I. Bauer and H.-J. Knölker, Chem. Rev. 2015, 115, 3170–3387

T. L. Mako and J. A. Byers, Inorg. Chem. Front., 2016, 3, 766

M. L. Neidig *et al., J. Am. Chem. Soc.* **2018**, *140*, 11872–11883 / *Acc. Chem. Res.* **2019**, *52*, 140–150

Ingmar Bauer and Hans-Joachim Knölker*

Recent advances in iron-catalysed cross coupling reactions and their mechanistic underpinning

- I. Introduction
- II. Preliminary works on iron-catalyzed cross-coupling
- III. Recent progress for classical cross-coupling reactions

 \rightarrow Focus on mechanism investigations

IV. Conclusion and outlooks

I. Introduction

- II. Preliminary works on iron-catalyzed cross-coupling
- III. Recent progress for classical cross-coupling reactions

 \rightarrow Focus on mechanism investigations

IV. Conclusion and outlooks

²⁵	²⁶	²⁷	28
Mn	Fe	CO	Ni
43	⁴⁴	⁴⁵	⁴⁶
TC	Ru	Rh	Pd

Stable isotopes: ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe

Oxidation states: -II, -I, **0**, +I, **+II**, **+III**, +IV, +V, +VI

 $FeCl_2$, $FeCl_3$, $Fe(acac)_3$

Readily available: 4th more abundant element in the Earth's crust

Cheap: 0.081 €/kg

Relatively non-toxic:

Acceptable level in drugs \rightarrow 1300 ppm Vs \leq 10 ppm for most transition metals

In biology: Transport of oxygen in vertebrates

In biology: Transport of oxygen in vertebrates

Applications in industrial productions:

• Production of ammonia (Haber-Bosch process):

 \rightarrow Main source of ammonia for nitrogen fertilizer

• Production of alkanes (Fischer-Tropsch process):

n CO + (2n+1) H₂
$$\xrightarrow{\text{Fe, Co or Ru cat.}}$$
 C_nH_{2n+2} + n H₂O
150-300 °C

• Production of hydrogen gas (Water-gas shift reaction):

Applications in industrial productions:

- Production of ammonia (Haber-Bosch process):
 - \rightarrow Main source of ammonia for nitrogen fertilizer
- Production of alkanes (Fischer-Tropsch process):

 $N_2 + 3 H_2$

n CO + (2n+1) H₂
$$\xrightarrow{\text{Fe, Co or Ru cat.}}$$
 C_nH_{2n+2} + n H₂O

• Production of hydrogen gas (Water-gas shift reaction):

Fe cat.

450-550

2 NH₃

A. Fürstner et al., ACS Cent. Sci. 2016, 2, 778–789

S. Gangula et al., Org. Process Res. Dev. 2015, 19, 470-475

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

Initial report by Kharash, 1941

• Exploring the effect of metallic halides (Fe, Co, Ni, ...) on the reaction of ArMgBr and RX

Development of Fe-catalyzed Kumada-Corriu cross coupling (Kochi, 1971)

• Applicable to alkenyl bromide and Grignard reagents

 $CH_{3}MgBr + \underbrace{FeCl_{3} (0.6 \text{ mol}\%)}_{(excess)} \xrightarrow{FeCl_{3} (0.6 \text{ mol}\%)}_{THF, 25 °C} \underbrace{CH_{3}}_{89\%}$

• Alkyl bromides converted in corresponding alkenes

EtMgBr + EtBr $\xrightarrow{\text{FeCl}_3(0.08 \text{ mol}\%)}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{H}}$ + EtH + Et-Et THF, 25 °C H H (<0.1%)

Further developed only 27 years later by Cahiez

M. S. Kharash, E. K. Fields, J. Am. Chem. Soc. 1941, 63, 2316-2320
M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487-1489
G. Cahiez, H. Avedissian, Synthesis 1998, 8, 1199-1205

Preliminary work

Proposed mechanism:

 \rightarrow Intense ESR spectrum comparable with the one of HFe^I(dppe)₂

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Z.-J. Shi et al., *J. Am. Chem. Soc.* **2009**, *131*, 14656-14657 Fürstner et al., *J. Org. Chem.* **2004**, *69*, 3943-3949 Fürstner et al., *Angew. Chem. Int. Ed.* **2016**, *55*, 6051–6056

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Very reactive but selective:

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Centered on the mechanism:

- → Several proposed: Fe⁻/Fe⁰, Fe⁰/Fe^{II}, Fe^I/Fe^{III}, Fe^{II}/Fe^{IV}, Fe^{II}/Fe^{IV}
- → Highly dependent on the conditions (Nucleophiles, ligands, solvents, additives)

- ightarrow Both one- and two-electron process possible
- \rightarrow Difficult elucidation of the mechanism:
 - Paramagnetic nature of many iron species
 - Air/thermal sensitivity of most reactive iron intermediates

- Numerous techniques applied: Electron paramagnetic resonance (EPR)
 - Magnetic circular dichroism (MCD)
 - ⁵⁷Fe Freeze-trapped Mössbauer spectroscopy
 - X-ray diffraction, ...

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Fe¹ species detected by Kochi \rightarrow [Fe₈Me₁₂]⁻ [MgCl(THF)₅]⁺isolated by Neidig *et al.*
- → Low activity alone, require additional MeMgBr

A. Fürstner *et al., J. Am. Chem. Soc.* **2008**, *130*, 8773-8787 M. L. Neidig *et al., J. Am. Chem. Soc.* **2016**, *138*, 7492–7495/ S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Fe¹ species detected by Kochi \rightarrow [Fe₈Me₁₂]⁻ [MgCl(THF)₅]⁺isolated by Neidig *et al.*
- → Low activity alone, require additional MeMgBr

• Several organoferrates isolated upon reaction of FeCl₃ with RMetal

Moderately active

A. Fürstner *et al., J. Am. Chem. Soc.* **2008**, *130*, 8773-8787 M. L. Neidig *et al., J. Am. Chem. Soc.* **2016**, *138*, 7492–7495/ S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Switch in presence of NMP or TMEDA:
 - Trialkyl ferrates isolated by Neidig → catalytically active

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Switch in presence of NMP or TMEDA:
 - Trialkyl ferrates isolated by Neidig → catalytically active

→ Exact mechanism not fully understood... (≠ for trialkyl ferrate than iron cluster)

R. B. Bedford et al., Angew. Chem. Int. Ed. 2014, 53, 1804–1808

M. L. Neidig *et al., Angew. Chem. Int. Ed.* **2018**, *57*, 6496–6500 / *Angew.Chem. Int. Ed.* **2019**, *58*,2769–2773 S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

 \rightarrow Fe^{-II}(MgX)₂ speculated (first by Bogdanovic)

ightarrow Several pre-catalysts synthesized and tried

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

 \rightarrow Fe^{-II}(MgX)₂ speculated (first by Bogdanovic)

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

Fe^{II}/Fe^{III} catalytic cycle proposed in many cases

Fe^{II}/Fe^{III} catalytic cycle proposed in many cases

 \rightarrow Whatever the mechanism, several experiments in favor of alkyl radicals:

Enantioselective Kumada-Corriu cross-coupling

Only one report to date (Nakamura et al. 2015)

• Enantioconvergent coupling of aryl Grignard reagents with α -chloroesters

Mechanistic investigations:

ightarrow First-order relationship between [Fe cat.] and ratio not cyclized-cyclized

Computational studies:

ightarrow 2 slightly different mechanisms proposed

- \rightarrow C-Cl activation high in energy for Fe^{II} species \rightarrow Fe^I more favorable
- → Dropwise addition of Grignard reagent important to avoid Fe^{II}PhPh (biphenyl formation)
- → Inner-sphere out-of-cage mechanism

O. Gutierrez *et al., J. Am. Chem. Soc.* **2017**, *139*, 16126–16133 M. Nakamura, K. Morokuma *et al., J. Am. Chem. Soc.* **2017**, *139*, 16117–16125

First reported with vinyl zinc reagents

Activator = NHPI, HOAt

M. Nakamura *et al., Org. Lett.* **2009**, *11*, 4496-4499 R. B. Bedford et al., *Chem. Commun.* **2009**, 600–602 / *Angew. Chem. Int. Ed.* **2013**, *52*, 1285–1288

56%

P. S. Baran et al., J. Am. Chem. Soc. 2016, 138, 11132-11135

Progress in Suzuki-Miyaura cross-coupling

Few reports \rightarrow Difficulty with the transmetallation/reduction step

First report of Fe-catalyzed Suzuki-Miyaura cross-coupling (Hor et al., 2008)

Solution: Use activated borate as nucleophile (Bedford et al., 2009)

D. J. Young *et al.*, *Tetrahedron Lett.* **2008**, *49*, 5620-5621 R. B. Bedford *et al.*, *Chem. Commun.* **2009**, 6430–6432 / *Organometallics* **2014**, *33*, 5767-5780

Progress in Suzuki-Miyaura cross-coupling

M. Nakamura *et al., J. Am. Chem. Soc.* **2010**, *132*, 10674-10676 / J. Org. Chem. **2012**, *77*, 1168-1173 / Chem. Lett. **2015**, *44*, 486-488 / Org. Biomol. Chem. **2020**, *18*, 3022-3026 R. B. Bedford *et al.*, Chem. Eur. J. **2014**, *20*, 7935-7938 33

Only few reports with aryl electrophile

- First reports \rightarrow Due to palladium contaminations (articles retracted later)
- Observed as side-product with 2-halobenzyl halides (< 41%)
- Directing group required (Bedford et al., 2018)

Proof of contaminations: R. B. Bedford, M. Nakamura *et al., Tetrahedron Lett.* **2009**, *50*, 6110-6111 R. B. Bedford *et al.,* Synthesis **2015**, *47*, 1761-1765 / *Nat. Catal.* **2018**, *1*, 429–437

Byers's work with ligand tuning

- Alkoxide to help the transmetallation \rightarrow Iron aggregates: inactive
- Anionic ligand and amide base \rightarrow improved transmetallation / monomeric iron species

• Improvement of the scope (heteroaromatic-BPin, 3° alkyl) and efficiency with:

Byers et al., Org. Lett. 2018, 20, 5233-5237 / Angew. Chem. Int. Ed. 2020, 59, 5392-5397

Enantioselective cross-coupling

First report of enantioselective Fe-catalyzed Suzuki-Miyaura cross-coupling (Nakamura *et al.* 2019)

• Enantioconvergent coupling of lithium arylborates with *α*-bromoesters

Still under developed ...

• First report by Bolm and coworkers

• Designed in water

$$\begin{array}{c} \searrow \\ & & \\$$

 \rightarrow Few other reports but only very high temperature

Only few reports

• Initial report by Vogel

• Extended to benzylic substrates via UV-irradiated iron catalyst

• Applied in 2017 to alkyl electrophiles

P. Vogel *et al., Adv. Synth. Catal.* **2008**, *350*, 2859–2864 G. W. Waldhart, N. P. Mankad, *J. Organomet. Chem.* **2015**, *793*, 171-174 S. P. Thomas *et al., ACS Catal.* **2017**, *7*, 2353–2356

Conclusion and Outlooks

- Iron-catalyzed Kumada-Corriu cross-coupling well developed
 - Very **fast** reaction, even at low temperature
 - Highly **chemoselective**
 - Cheap catalyst, often without ligand
 - Less-sensitive to β-hydride elimination

However, mechanisms still not fully understood ...

- Almost no enantioselective version
- Use of less-nucleophilic partner still underdeveloped

Conclusion and Outlooks

- Iron-catalyzed Kumada-Corriu cross-coupling well developed
 - Very **fast** reaction, even at low temperature
 - Highly chemoselective
 - Cheap catalyst, often without ligand
 - Less-sensitive to β-hydride elimination

However, mechanisms still not fully understood ...

- Almost no enantioselective version
- Use of less-nucleophilic partner still underdeveloped

Thank you for your attention

Can you suggest a mechanism for this transformation ?

Can you suggest a mechanism for this transformation ?

Fürstner et al., Angew. Chem. Int. Ed. 2013, 52, 13071 – 13075

Propose a mechanism for the reduction of Fe $^{\rm II}$ to Fe $^{\rm II}$ and Fe $^{\rm III}$ to Fe $^{\rm III}$

Propose a mechanism for the reduction of Fe^{II} to Fe^{-II} and Fe^{III} to Fe^{-II}

Catalytic Enantioselective Syntheses and Transformations of Cyclopropyl Ketones and Derivatives

Frontiers in Chemical Synthesis I: Towards Sustainable Chemistry

Stephanie AMOS

11 May 2020

Ecole Polytechnique Fédérale de Lausanne

Laboratory of Catalysis and Organic Synthesis (LCSO)

EPFL • Cyclopropanes for difunctionalisation

H. N. C. Wong et al. Chem. Rev. 1989, 89, 165-198; O. G. Kulinkovich, Cyclopropanes in Synthesis; 2015, John Wiley & Sons, Inc.; E. M. Carreira et. al. Chem. Rev. 2017, 117, 11651–11679.

EPFL • General strategies

Synthesis of chiral cyclopropyl ketones

EPFL • Traditionnal strategies: diazo ketones

M. A. McKervey, Chem. Rev. 2015, 115, 9981–10080; O. Reiser et al. Chem. Commun. 2012, 48, 3457–3459; M. Tilset et al. Org. Lett. 2009, 11, 547-550; X. P. Zhang et al. J. Am. Chem. Soc. 2007, 129, 12074-12075; L. K. Woo et al. Organometallics, 2012, 31, 3628–3635.

EPFL • MIRC with ylides

Aggarwal, ACIE, 2001

EPFL • Rh-catalysed phosphorus ylide promoted cyclopropanation

EPFL • N-Enoxyimide mediated cyclopropanations

T. Rovis et al. J. Am. Chem. Soc. 2014, 136, 11292–11295; T. Rovis et al. J. Am. Chem. Soc. 2018, 140, 9587–9593; N. Cramer et al. Chem. Sci. 2019, 10, 2773-2777.

EPFL • Transition metal catalysed cyclopropene difunctionalisation

V. M. Dong et al. J. Am. Chem. Soc. 2010, 132, 16354–16355; F. Glorius et al. Angew. Chem. Int. Ed. 2011, 50, 12626–12630.

EPFL • Organocatalytic cyclopropene difunctionalisation

Enantioselective cyclopropyl ketone ring-opening

EPFL • Diastereoselective transformations

Oshima, Tetrahedron, 2001 Olsson, Org. Lett., 2002 1. TiCl₄-nBu₄NI Mgl₂ or Et₂All OH 0 R^2 R^2 CHO, R^3 NH₂ 2. R^2CHO 54-85% yield up to >99:1 dr. 16-75% yield \mathbf{R}^{1} R^1 up to >99:1 dr. \mathbb{R}^1 \mathbb{R}^1 R³N 0~[Ti] O___LA R R Yoon, JACS, 2011 $Ru(bpy)_3Cl_2$ R^2 La(OTf)₃ \mathbb{R}^2 \mathbf{R}^3 55-86% yield R^1 R^1 Blue LEDs up to >10:1 dr. LA R^3 0 R \mathbf{R}^2

EPFL • TM catalysed C-C activation

EPFL • Radical ring-opening with Ti-based catalyst

EPFL • Lewis acid and photocatalysed radcial [3+2] cycloaddition

EPFL • [3+2] photocycloaddition

EPFL • Conclusion: enantioselective syntheses of cyclopropyl ketones

EPFL • Conclusion: enantioselective transformations of cyclopropyl ketones

Me

-Me

Ph

1-Ad

Ad

 Enantioselctive transformations limited to [3+2] cycloadditions

Transition metal C-C activation

EPFL • Questions?

• Propose the starting material and a mechanism for this transformation

Lautens, OL, 2011

Propose a structure for the following transformation

07/10/2020

Thank you for your attention!

Any questions?

EPFL • Rovis trans cyclopropanation

EPFL • Cyclopropene rh difunct

PhD course Frontiers in Chemical Synthesis I: Sustainable Chemistry

Acid-mediated hydroaminomethylation

Gitlina Anastasia PhD student, LCS, Prof. Kay Severin

13th May 2020

Amines

Lubricants

2

Summary of amines synthesis

<u>Classical</u> S_N2 reactions:

Reductive routes:

Hydroamination:

HAM methods

Tandem HAM via hydroformylation

Kaiser et al., Angew. Chem. In. Ed., 2019, 58, 14639

Kalck et al., Chem. Rev., 2018, 118, 3861

Catalytic cycle of hydroformylation step

Raymond et al., Organometallics, 2003, 22 (25), 5358

7

Metal-catalyzed HAM of alkenes

Recent catalytic systems:

M = Sc, Y

Gao et al, Org. Chem. Front., 2018, 5, 59

DIPP'

M = Nb, n = 0

DIPP

Lehning *et al*, *Chem. Eur. J.*, **2017**, 23, 4197 Bielefeld *et al*, *Angew. Chem. Int. Ed.*, **2017**, 56, 15155

Lauzon *et al*, *ACS Catal.*, **2017**, 7, 5921 Chong *et al*, *J. Am. Chem. Soc.*, **2014**, 136, 10898 Reznichenko *et al*, *J. Am. Chem. Soc.*, **2012**, 134, 3300

Overall:

- + 1°, 2°, 3° amines
- + activated and nonactivated akenes
- + moderate to good yields
- terminal alkenes
- double HAM
- mixture of linear and branched products
- moderate FG tolerance
- air sensitivity

Tran et al, Angew. Chem. Int. Ed., 2017, 56, 10530

Photocatalytic approach to HAM

Pros vs Cons of metal-catalyzed methods of HAM of alkenes

\odot

one-pot atom economy orthogonal/autotandem catalysis high yields* high chemo-, regio-, enantioselectivity* good functional group tolerance*

*if catalyst is well-designed

moderate yields in general catalyst design catalyst-based substrate design early TM incompatible with air conditions limited olefins scope (nonactivated, terminal) selectivity restrictions double alkylation metal or oxidant additives in principle

> metal-free? activated π-systems?

Acid-mediated HAM with aminals

T. Cohen, A. Onopchenko, J. Org. Chem., 1983, 48 (24), 4531

HAM of activated substrates with N,O-acetals

Acid-mediated HAM

*Yield determined by ¹H NMR analysis using an internal standard Kaiser et al., *Angew. Chem. In. Ed.*, **2019**, 58, 14639

Aminals scope

Olefins scope

*DCE used as co-solvent

**Reaction was run for 5 h

***Reaction was run at room temperature

Domino functionalization

Pharmaceutical products synthesis

Prediger et al., J. Org. Chem., 2011, 76, 7737

Conclusion

References

Reviews

- 1. Urrutigoïty, Tandem hydroaminomethylation reaction to synthesize amines from alkenes Chem. Rev., 2018, 118, 3833.
- 2. Agbossou-Niedercorn, Recent metal-catalysed assymetric hydroamination of alkenes *Journal of Organometallic Chemistry*, **2017**, 847, 13.
- 3. Boutevin, Biobased amines: from synthesis to polymers; present and future *Chem. Rev.*, **2016**, 116, 14181.
- 4. Kustov, Catalytic hydroamination of unsaturated hydrocarbons *Top. Catal.*, **2016**, 59, 1196.
- 5. Hannedouche, Recent advances in metal free- and late transition metal-catalyzed hydroamination of unactivated alkenes *Catal. Sci. Technol.*, **2015**, 5, 2017.
- 6. Gooßen, Late transition metal-catalyzed hydroamination and hydroamidation *Chem. Rev.*, **2015**, 115, 2596.
- 7. Müller, Hydroamination: direct addition of amines to alkenes and alkynes Chem. Rev., 2008, 108, 3795.

Articles

- Maulide, A general acid-mediated hydroaminomethylation of unactivated alkenes and alkynes Angew. Chem. Int. Ed., 2019, 58, 14639.
- Zacchino, Design of two alternative routes for the synthesis of naftifine and analogues as potential antifungal agents *Molecules* 2018, 23, 520.
- 3. Xu, Scandium-catalyzed C(sp³)–H alkylation of N,N-dimethyl anilines with alkenes Org. Chem. Front., **2018**, 5, 59.
- Doye, Hydroaminoalkylation of allylsilanes and a one-pot procedure for the synthesis of 1,5-benzoazasilepines *Chem. Eur. J.*, 2017, 23, 4197.

5. Doye, Dimethylamine as a substrate in hydroaminoalkylation reactions Angew. Chem. Int. Ed., 2017, 56, 15155.

6. Schafer, Amidate complexes of tantalum and niobium for the hydroaminoalkylation of unactivated alkenes **2017**, ACS Catal., 7, 5921.

7. Yu, Practical alkoxythiocarbonyl auxiliaries for iridium(I)-catalyzed C–H alkylation of azacycles Angew. Chem. Int. Ed., 2017, 56, 10530.

8. Schafer, 2-piridonate tantalum complexes for the intermolecular hydroaminoalkylation of sterically demanding alkenes *J. Am. Chem. Soc.*, **2014**, 136, 10898.

9. Nishibayashi, Visible-light-mediated utilization of α-aminoalkyl radical: addition to electron-deficient alkenes using photoredox catalysts *J. Am. Chem. Soc.*, **2012**, 134, 3338.

10. Correia, Substrate-directable Heck reactions with arenediazonium salts. The regio- and stereoselective arylation of allylamine derivatives and application in the synthesis of naftifine and abamines *J. Org. Chem.* **2011**, 76, 7737.

11. Leeuwen, Influence of the bite angle on the hydroformylation of internal olefins to linear aldehydes Organometallics, 2003, 22, 5358.

12. Mayr, Synthesis of allylamines from alkynes and iminium ions Synthesis, 2003, 12, 1790.

13. Mayr, Ene reactions of alkynes for the stereoselective synthesis of allylamines Angew. Chem. Int. Ed. Engl., **1997** 36, 143.

14. Mayr, Reactions of allylsilanes with iminium salts: ene reactions with inverse electron demand J. Org. Chem., 1996, 61, 5823.

15. Mayr, A novel pentaannulation reaction of iminium ions *Liebigs Ann./Recueli*, **1996**, 333.

16. Petasis, The boronic acid Mannich reaction: a new method for the synthesis of geometrically pure allylamines *Tetrahedron Letters*, **1993**, 34 (4), 583.

17. Stütz, Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics J. Med. Chem., **1986**, 29, 112.

18. Cohen, Onopchenko, Competing hydride transfer and ene reactions in the aminoalkylation of 1-alkenes with *N*,*N*-dimethylmethyleniminium ions. A literature correction *J. Org. Chem.*, **1983**, 48, 4531.

Thank you for your kind attention!

Question + Exercise

• Do you have any ideas regarding the choice of TFA in the work of Prof. Maulide group?

"...we suspect the solvating properties of TFA, as well as the low nucleophilicity and low basicity of the corresponding conjugate base play important roles in dictating the reaction outcome by facilitating the hydride transfer event."

• Choose the product of HAM

Exercise

Additional slide – mechanistic studies of acidmediated hydroaminomethylation

Gold catalysed C-C bond forming reactions of unactivated olefins

Kedar Abhyankar

Prof. Dyson Group

Gold catalysis: Introduction

- Relatively less scarce
- Gold is commonly recycled
- Hydrolytically/aerobically stable
- Rational catalyst design less developed
- Alkynes and allenes common substrates
- Typically formulated as pi-acid catalysis

- However:
- Oxidative coupling processes /cross-coupling processes
- Au carbene species invoked as intermediates
- 6s contraction, 5d expansion
- Dual behaviour
Olefins as substrates

- Alkenes: key petrochemical feedstock
- Less reactive than alkynes
- Functionalisation of high synthetic utility
- C-C bond forming reactions always in vogue
- Focus here is on unactivated alkenes: not dienes, ene-ynes, allenes

Isolation of alkyl species in Au-catalysed hydroamination

- Inertness of alkyl intermediates accounts for scarce reactivity
- <u>Focus: C-C bond forming reactions that feature i</u>) powerful transformations ii) novel catalytic systems

Carboheterofunctionalisation of alkenes

- Controlled heterocycles synthesis is of immense value
- As well as direct conversion of alkenes
- Limited intermolecular variants/multi-component couplings

16

 Au(I) hasn't lagged behind: development has been alongside more common Pd and Rh systems

J. Alicea and J. P. Wolfe, J. Org. Chem., 2014, 79, 4212–4217.

HO^tBu, NaBr

Y = O, NP

Carboamination

٠

Tóste (JACS 2010)

R

 $2BF_4$ Ph₃PAuCl (5 mol %) Ts Τs Selectfluor (2 equiv) Ar $ArB(OH)_2$ R MeCN, 60 °C Selectfluor 2 equiv 2–6 h **133**: Yield: 44–94% **132**: *n* = 1, 2 Selectfluor Ts H D PhB(OH)₂ AuX PhB(OH)2 Reported by Zhang et al -Au-X Р Potential intermediacy of LAuPh hypothesised but contradicted by в FB(OH)₂ 6 LAuPh reductive Selectfluo elimination Au(1)/Au(111) catalysis Ts N ₽h ^{¬+} Η,D L = Ph₃P; S = solvent; X = CI or F L-Au-X anti NHTs attack Ph' С NHTs. Ε Ph-Au-X D

> G. Zhang, L. Cui, Y. Wang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 1474–1475. S. Zhu, L. Ye, W. Wu and H. Jiang, *Tetrahedron*, 2013, **69**, 10375–10383.

Carboamination: A new mechanistic proposal

Intramolecular variant: Aryl C-H functionalisation

- In conflict mechanistically with prior approach
- First example of C-H functionalisation with Au-alkyl
- 30eq H₂O required
- cf. *ortho*-metalation by platinum group metals

Carboalkoxylation

B. G. Zhang, L. Cui, Y. Wang and L. Zhang, J. Am. Chem. Soc., 2010, 132, 1474–1475.

Hydroarylation

- A tertiary centre bearing 2 aryl groups is an essential structural motif in both natural and pharmaceutical products
- Direct access from alkenes is would be of immense synthetic value

D. Wang, B. Dong, Y. Wang, J. Qian, J. Zhu, Y. Zhao and Z. Shi, *Nat. Commun.*, 2019, **10**, 3539.

Y.-G. Chen, B. Shuai, X.-T. Xu, Y.-Q. Li, Q.-L. Yang, H. Qiu, K. Zhang, P. Fang and T.-S. Mei, *J. Am. Chem. Soc.*, 2019, **141**, 3395–3399.

Addition of indoles to alkenes using Au(I)

Isolation of intermediate Au(I) alkene complex

(a) AgSbF₆, DCM, from -30 to 0 °C, 0.5 h

- Recently isolated (Bourissou 2019)
- Interesting geometry and bonding (between T and Y)
- Increased metallacyclopropane character relative to monodentate species
- Key catalytic intermediate

Au(III) catalysed hydroarylation of alkenes with benzene derivatives

Au(I) catalysed hydroarylation with dialkylanilines

Au(I) catalysed hydroarylation with dialkylanilines (cont.)

- Para-selective in majority of cases, occasional orthocompetition
- Borane-catalysed variant, only active with Michael acceptors. Same antimarkovnikov product

H. Wu, T. Zhao and X. Hu, *Sci. Rep.*, 2018, **8**, 11449. W. Li and T. Werner, *Org. Lett.*, 2017, **19**, 2568–2571.

Cyclopropanation: Au carbenes from cycloheptatrienes

- Trisubstituted arycyclopropanes easily prepared via Au(I) catalysed Retro-Buchner reaction
- Utilising cycloheptatrienes as carbene/carbenoid sources
- A methodology well developed work with Au(I) systems
- Starting aryl or styryl cycloheptatrienes are easily prepared from tropylium
- Potentially wide substrate scope

C. R. Solorio-Alvarado, Y. Wang and A. M. Echavarren, J. Am. Chem. Soc., 2011, **133**, 11952–1195M. Mato, C. García-Morales and A. M. Echavarren, ChemCatChem, 2019, **11**, 53–72.

Cyclopropanation cont.

- Favours reaction with alkene over C-H insertion
- Intramolecular ylid cyclisation another methodology (activation of olefin by Au(I))

M. Mato, C. García-Morales and A. M. Echavarren, *ChemCatChem*, 2019, **11**, 53–72. . R. Solorio-Alvarado, Y. Wang and A. M. Echavarren, *J. Am. Chem. Soc.*, 2011, **133**, 11952–11955 1X. Huang, S. Klimczyk, L. F. Veiros and N. Maulide, *Chem. Sci.*, 2013, **4**, 1105–1110.

- Gold mediated C-C bond forming reactions of unactivated olefins: some key reactions of interest (carboheterofunctionalisation, hydroarylation, Retro-Buchner reaction of cycloheptatrienes in formation of Au carbenes
- By no means exhaustive: the utility of allylic alcohols, addition of active methylene compounds, hydroalkylation, Au-Heck with aryldiazonium salts and dual photoredox/Au catalysed processes

Exercises

Suggest a synthesis of this precatalyst. Given that the free ligand is relatively less stable, the preparation utilised constructs the ligand within the protective environment of the metal coordination sphere.

Suggest a plausible catalytic cycle for this transformation

Answers

