Exercice bonus 1.

Considérons l'anneau suivant pour un corps quelconque k:

$$A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in k \right\}.$$

1. Démontrez que si $I \neq A$ est un idéal (bilatère/à gauche/à droite) de A, alors I est contenu dans un des sous-ensembles suivants de A:

$$A_1 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in k \right\}$$

et

$$A_2 = \left\{ \begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} \mid b, c \in k \right\}.$$

- 2. Montrez que A_1 et A_2 sont des idéaux bilatères. Montrez que A_1 et A_2 avec l'addition et la multiplication héritée de l'anneau A ne sont pas des anneaux.
- 3. Listez tous les idéaux (bilatères/à gauche/à droite) de A.

Solution. On note A^{op} l'anneau avec groupe additif (A, +) avec la multiplication définie par

$$g_1 *_{op} g_2 = g_2 g_1.$$

Notez en premier lieu l'isomorphisme d'anneaux entre $\sigma: A \to A^{op}$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} c & b \\ 0 & a \end{pmatrix}.$$

On vérifie que c'est un isomorphisme. La bijectivité est claire, comme σ est son propre inverse au niveau ensembliste. De plus comme

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_1 \\ 0 & c_1 c_2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} c_2 & b_2 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} c_1 & b_1 \\ 0 & a_1 \end{pmatrix} = \begin{pmatrix} c_1 c_2 & a_1 b_2 + b_1 c_2 \\ 0 & a_1 a_2 \end{pmatrix},$$

on conclut que σ est un isomorphisme d'anneaux.

Cela va nous permettre d'effectuer des raisonnements par symétrie et de faire moins de calculs. **Barème.** On enlèvera 10 points pour des affirmations de type "par symétrie" non motivées par des calculs ou l'isomorphisme évoqué ci-dessus. La symétrie ressentie dans la résolution de ce problème est incarnée par cet isomorphisme et il est important de pouvoir le détecter si on tient à formaliser de tels arguments.

1. On remarque si deux éléments d'une matrice dans la diagonale sont non-nuls, alors la matrice est inversible. Ainsi si I est un idéal (bilatère/à gauche/à droite) et $i \in I$ tel que les deux éléments de la diagonale sont non-nuls, comme i a dès lors un inverse (à gauche et à droite) alors I = A. Par contraposée, on conclut.

Barème. 10pts.

2. Notons que si

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

alors $A_1 = e_1 A$. Dès lors, A_1 est un idéal à droite. Maintenant pour $a, b, c \in k$ si

$$g = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad g' = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix},$$

on a $ge_1 = e_1 g'$. Ainsi on conclut que $e_1 A$ est également un idéal à gauche.

Comme $e_1^2 = e_1$, on voit que e_1 est un élément neutre à gauche dans A_1 . Si A_1 était un anneau avec la multiplication et l'addition héritée de A, celui-ci aurait un unique élément neutre 1_{A_1} et nécessairement $1_{A_1} = e_1$ car on aurait $e_1 = e_1 1_{A_1} = 1_{A_1}$. Mais si

$$e_1' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

on voit $e'_1e_1 = 0 \neq e'_1$. Ainsi, on conclut que A_1 ne peut être un anneau avec la multiplication et l'addition héritée de A.

Maintenant, A_1 est envoyé sur A_2 par l'isomorphisme σ . Dès lors, on conclut que A_2 est un idéal bilatère, et que A_2 ne peut être un anneau avec l'addition et la multiplication héritée de A.

Barème. 10 points pour montrer que A_1 et A_2 sont bilatères. 20 points pour montrer que ce ne sont pas des anneaux.

3. Traitons les idéaux non-nuls et non égaux à A. On commence par traiter les idéaux strictement contenus dans A_1 . On voit qu'un tel idéal I est forcément un k-espace vectoriel de dimension 1. Ainsi I est forcément de la forme, pour $a, b \in k$ fixés non tous les deux nuls

$$I = \left\{ \begin{pmatrix} \lambda a & \lambda b \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Si a=0, on note l'idéal

$$I_0 = \left\{ \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Comme $I_0 = A_1 \cap A_2$, I_0 est un idéal bilatère.

On traite maintenant le cas $a \neq 0$. On a les possibilités suivantes pour $\mu \in k$

$$I_1(\mu) = \left\{ \lambda \begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Si $a, b, c \in k$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & a\mu \\ 0 & 0 \end{pmatrix}.$$

Ainsi $I_1(\mu)$ est un idéal à gauche. En revanche comme

$$\begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

on voit que $I_1(\mu)$ n'est pas un idéal à droite.

On a donc traité tous les idéaux non-nuls et stricts de A_1 . On sait de plus par le premier point que les idéaux non égaux à A sont forcément dans A_1 ou dans A_2 .

Notons

$$I_2(\mu) = \left\{ \lambda \begin{pmatrix} 0 & \mu \\ 0 & 1 \end{pmatrix} \mid \lambda \in k \right\}.$$

Par symétrie (l'isomorphisme entre A et A^{op} évoqué plus haut), on peut donc conclure que

$$\{0\}, I_0, A_1, A_2, A$$
 sont les idéaux bilatères

que pour $\mu_1 \in k$

 $I_1(\mu_1)$ sont les idéaux à gauche mais pas à droite

et que pour $\mu_2 \in k$

 $I_2(\mu_2)$ sont les idéaux à droite mais pas à gauche.

Barème. 10 points pour montrer que I_0 est bilatère. 10 points pour montrer que les $I_1(\mu)$ sont des idéaux à gauche. 10 points pour montrer que les $I_1(\mu)$ ne sont des idéaux pas des idéaux à droite. 20 points pour traiter les $I_2(\mu)$ (donc que ce sont des idéaux à droite et pas à gauche). 10 points pour conclure avec la liste et argumenter que ce sont les seuls.