
Artificial Neural Networks (Gerstner). Solutions for week 2

Reinforcement Learning: Q-value and SARSA

Exercise 1. Recap of Online, Batch, and Expectations in ML (regression problem)1

We consider data coming from a distribution p(x, y) where x is one-dimensional input and y the
output. We have three possible x-values with p(x = 0) = 0.2 and p(x = 1) = p(x = −1) = 0.4. The
output probabilities are

– p(y = 1|x = 0) = p(y = 5|x = 0) = 0.5

– 3 · p(y = 1|x = 1) = p(y = 5|x = 1) = 0.75

– p(y = 1|x = −1) = 3 · p(y = 5|x = −1) = 0.75

The aim is to look at convergence of a linear estimator f(x) = ax + b with a quadratic loss function

l
(
y, f(x)

)
=
(
y − f(x)

)2
, using gradient descent either in batch or in online mode.

a. Before you start, strengthen your intuitions. Suppose that we have drawn 50 points that match
the statistical weights of the distribution. In total we have 50 points:

–
{

(xk, yk) = (0, 1)
}5
k=1

–
{

(xk, yk) = (0, 5)
}10
k=6

–
{

(xk, yk) = (1, 1)
}15
k=11

–
{

(xk, yk) = (−1, 5)
}20
k=16

–
{

(xk, yk) = (−1, 1)
}35
k=21

–
{

(xk, yk) = (1, 5)
}50
k=36

Take a piece of paper, draw the points, and draw by eye the best linear fit. Trough which y-value
should the line pass at x = 0 or at x = 1?

b. Here you can decide whether you would like to check the result in simulation (i) OR in theory
(ii), i.e., you do not need to do both. Question (c) is again for everybody.

(i) Simulation: Implement the task in Python: Use gradient descent with a small but fixed
learning rate η. Follow the convergence of the parameters a and b to their final values.
Compare batch mode (full batch of 50 samples) with online mode (one sample at a time).
How do the fluctuations 〈(∆b)2〉 scale with learning rate η? e.g., linear, quadratic, or other?

Instead of the 50 handpicked examples above, draw N examples randomly and indepen-
dently from the distribution p(x, y). Run BATCH mode for a small η and observe the final
result as a function of N . How close is it to the optimal solution?

Start at the optimal solution for b that defines the minimum of the loss function for N →∞
but use only a few randomly picked samples. Do you stay at the exact minimum or does
the solution move away? How about if you average your solution over 100 update steps?
How does the answer to the last two questions change as a function of N?

(ii) Theory: Solve for optimal parameters a∗ and b∗ analytically in the infinite data limit
starting from the loss function. (Hint: you can also construct from general theorems of L2
loss and symmetries of the problem at hand).

Then define the update step for the batch rule starting from arbitrary (a, b). Show that
the update step is equal to 0 at (a∗, b∗).

Start at the exact solution (a∗, b∗), but use the online rule by picking randomly from the
50 examples above. How big are the fluctuations? Based on calculations, how do the
fluctuations 〈(∆b)2〉 scale with the learning rate? e.g., linear, quadratic, or other?

1The result of Exercise 1 will be used in the first lecture of week 2.



c. Can you link the above results to the update of Q-values in the bandit problem? Can we relate
Q-values to parameters? What would be states, actions, and rewards?

Solution:

a. See Figure 1. The line should pass through y = 5+1
2 = 3 at x = 0 and through y = 3∗5+1

4 = 4 at
x = 1.

y=5

y=1

x=-1 x=1

15 pts

best line

5 pts5 pts

5 pts5 pts

15 pts

Figure 1: Solution to Exercise 1a.

b. (i) Simulation: See the corresponding Jupyter notebook for the code and the results. In
summary, online mode estimates of a and b fluctuate around their mean (which is the
optimal value), whereas the batch mode estimates converge to the optimal values. The
online mode’s fluctuations scale quadratically with the learning rate η. When sampling
random data, the estimates are biased because of the finite sample size, but the bias is
reduces as the sample size grows.

(ii) Theory: The loss function for the infinite data limit is

L(a, b) =
∑
x,y

p(x, y)l(y, f(x)) =
∑
x,y

p(x, y)(y − ax− b)2.

The optimal (a∗, b∗) is the solution to

∂L
∂a

= −2
∑
x,y

p(x, y)(y − a∗x− b∗)x = 0

∂L
∂b

= −2
∑
x,y

p(x, y)(y − a∗x− b∗) = 0

which results in

b∗ = E[y]− a∗E[x] = E[y] = 3

a∗ =
E[xy]− b∗E[x]

E[x2]
= 1,

where we used E[x] =
∑

x,y p(x, y)x = 0, E[y] =
∑

x,y p(x, y)y = 3, E[x2] =
∑

x,y p(x, y)x2 =
0.8, and E[xy] =

∑
x,y p(x, y)xy = 0.8.

The update step for the batch rule is

∆a = η
2

N

N∑
k=1

(yk − axk − b)xk = 2η
(
Ê[xy]− aÊ[x2]− bÊ[x]

)
∆b = η

2

N

N∑
k=1

(yk − axk − b) = 2η
(
Ê[y]− aÊ[x]− b

)
,



where Ê[x] = 1
N

∑
k xk = 0, Ê[y] = 1

N

∑
k yk = 3, Ê[x2] = 1

N

∑
k x

2
k = 0.8, and Ê[xy] =

1
N

∑
k xkyk = 0.8. For the particular dataset mentioned in this exercise, we can replace Ê

by E in the equation above. Hence, ∆a = 0 and ∆b = 0 at (a∗, b∗).

The online update rule for sample k at (a∗, b∗) is

∆a = 2η(yk − a∗xk − b∗)xk
∆b = 2η(yk − a∗xk − b∗).

The fluctuations 〈(∆b)2〉 scales quadratically with η.

c. In the bandit problem, the state-action pair (s, a) is similar to the input x and the reward value
r is similar to the output y. Each Q-value Q(s, a) can be seen as a separate parameter. Iterative
update of Q-values with the online rule leads to fluctuations of the Q-values. In contrast to
the regression problem where the y-values of 3 different x-values are modeled by the function
f(x) with 2 parameters (which forces some interpolation), in the bandit problem, we have one
separate Q-value for each x = (s, a).

Exercise 2. SARSA algorithm

In the lecture, we introduced the SARSA (state-action-reward-state-action) algorithm, which (for
discount factor γ = 1) is defined by the update rule

∆Q(s, a) = η
[
r −

(
Q(s, a)−Q(s′, a′)

)]
, (1)

where s′ and a′ are the state and action subsequent to s and a. In this exercise, we apply a greedy
policy, i.e., at each time step, the action chosen is the one with maximal expected reward, i.e.,

a∗t = arg max
a

Qt(s, a) . (2)

If the available actions have the same Q-value, we take both actions with probability 0.5.

Consider a rat navigating in a 1-armed maze (=linear track). The rat is initially placed at the upper
end of the maze (state s), with a food reward at the other end. This can be modeled as a one-
dimensional sequence of states with a unique reward (r = 1) as the goal is reached. For each state,
the possible actions are going up or going down (Figure 2). When the goal is reached, the trial is
over, and the rat is picked up by the experimentalist and placed back in the initial position s and the
exploration starts again.
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Figure 2: A linear maze. Figure 3: A tree–like environment.



a. Suppose we discretize the linear track by 6 states, s1, . . . , s6 where s1 is the initial state and s6 is
the goal state. Initialize all the Q-values at zero. How do the Q-values develop as the rat walks
down the maze in the first trial?

b. Calculate the Q-values after 3 complete trials. How many Q-values are non-zero? How many
trials do we need so that information about the reward has arrived in the state just ‘below’ the
starting state?

c. What happens to the learning speed if the number of states increases from 6 to 12? How many
Q-values are non-zero after 3 trials? How many trial do we need so that information about the
reward has arrived in the state just ‘below’ the starting state?

Solution:

a. In the first trial, since all Q’s are zero, the term (Q(s, a)−Q(s′, a′)) is always zero. Learning
only occurs when there is a reward ie, the first time action a1 is taken from state s5. The learning
is then

∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η , (3)

so that now all Q are zero except for Q(s5, a1) = η.

b. In the second trial, the first time ∆Q(s, a) is not zero is when the agent takes action a1 from
state s4, and we have

∆Q(s4, a1) = η [r − (Q(s4, a1)−Q(s5, a1))] = η(0− (0− η)) = η2 . (4)

Next, from state s5, the agent chooses the action with the highest Q value, a1, and the weight
update is

∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η(1− (η − 0)) = η − η2 . (5)

So at the end of the second trial, the non-zero Qs are:

Q(s4, a1) = η2 and Q(s5, a1) = 2η − η2 .

In the third trial, the first Q update happens for Q(s3, a1)

∆Q(s3, a1) = η [r − (Q(s3, a1)−Q(s4, a1))] = η(0− (0− η2)) = η3 . (6)

The subsequent updates are

∆Q(s4, a1) = η [r − (Q(s4, a1)−Q(s5, a1))] = η(0− (η2 − 2η + η2)) = 2(η2 − η3)
∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η(1− (2η − η2 − 0)) = η − 2η2 + η3 .

So after three trials, the Qs are:

Q(s3, a1) = η3 , Q(s4, a1) = 3η2 − 2η3 and Q(s5, a1) = 3η − 3η2 + η3 .

Note that terms for all the Qs converge towards 1 (the reward after). The higher η is, the faster
the convergence, with convergence in 1 step in the extreme case η = 1.

We need one more trial until Q(s2, a1) becomes non-zero, i.e. in total 4 trials.

c. Also with 12 states only 3 Q-values are non-zero after 3 trials. It takes 10 trials until the reward
has arrived just ‘below’ the starting state.

Exercise 3. Bellman equation

Use the Bellman equation to calculate Q(s, a1) and Q(s, a2) for the environment shown in Figure 3.
Consider two different policies:



• Total exploration: All actions are chosen with equal probability.

• Greedy exploitation: The agent always chooses the best action.

Note that the rewards/next states are stochastic for the actions a1′, a2′ and a3′. Assume that the
probabilities for the outcome of these actions are all equal, and the discount factor γ is 1.

Solution:

Total exploration: Since we have a directed graph without loops, the Bellman equation is solved
via dynamic programming, starting at the bottom of the tree We start by computing the state-action
values for states s′1 and s′2:

Q(s′1, a
′
1) =

1

2
(1 + 2) =

3

2
,

Q(s′1, a
′
2) =

1

2
(1 + 2) =

3

2
,

Q(s′2, a
′
2) =

1

2
(1 + 2) =

3

2
and

Q(s′2, a
′
3) =

1

2
(0 + 6) = 3.

We can now compute the state-action values for state s:

Q(s, a1) = 1 +
1

2
(Q(s′1, a

′
1) +Q(s′1, a

′
2)) =

5

2
and

Q(s, a2) = 0 +
1

2
(Q(s′2, a

′
2) +Q(s′2, a

′
3)) =

9

4
.

Greedy exploitation: In that case, the state-action values for the s′1 and s′2 are unchanged, but
those for s reflect the fact that we now take the best action:

Q(s, a1) = 1 +Q(s′1, a
′
1) =

5

2
and

Q(s, a2) = 0 +Q(s′2, a
′
3) = 3 .

Notice that now the “best” action in state s is a2, whereas it was a1 for the total exploration policy.

Exercise 4. Computer exercises: Environment 1 (part 1)1

Download the Jupyter notebook of the 1st computer exercise, setup your Python environment, and
complete ‘Exercise 0: One step horizon’.

1Start this exercise in the second exercise session of week 2.


