

Renewable Energy

Prof. Sophia Haussener MER Jan Van herle

Laboratory of Renewable Energy Sciences and Engineering (LRESE)
Group o Energy Materials (GEM, EPFL-Sion)

Content Chapter 2

- Thermodynamics basics
 - Definitions
 - 1st law (energy conservation)
 - 2nd law (entropy)
 - Exergy
- Review of thermodynamic power cycles
 - Rankine, Brayton, combined cycles, engines
- Thermodynamic power cycles relevant for renewable energy applications
- Review of thermodynamic heat pump and refrigeration cycles

Learning outcomes

- Understand and apply 1st and 2nd law of thermodynamics, and exergy concept to various relevant systems and thermodynamic cycles
- Apply theory to thermodynamic cycles relevant for renewable energy sources

Context

Current global power production¹

IEA, World key energy statistics, 2020

¹ excl. electricity generation from pumped hydro

https://webstore.iea.org/download/direct/4093?fileName=Key_World_Energy_Statistics_2020.pdf

² incl. geothermal, solar, wind, heat, etc.

³ incl. peat and oil shales

Context

Energy conversion systems overview

Service	'Traditional' systems	'Advanced' (or 'new') systems
HEAT (low temperature)	Combustion (fossil fuel, wood)	Heat pumps Solar thermal Cogeneration
HEAT (high temperature)	Electrical	Efficient clean combustion Cogeneration Concentrated solar thermal
MOBILITY	Internal combustion engines Electrical (train, bus) Aviation turbines	High efficiency engines Hybrid drives Fuel Cell vehicles, E-vehicles Liquid biofuels
ELECTRICITY	Fossil thermal (coal, gas) Nuclear (PWR, BWR) Hydro (river, dams)	Optimised fossil & biomass power plants Nuclear Generation-IV Hydro (tidal, wave) Solar (photovoltaics) Solar (concentrated thermal) Wind turbines

- Traditional and advanced systems rely on power cycles, traditional turbomachinery: heat → mechanical energy → electricity
- Smart heating applications rely on heat pumping cycles

Examples

Coal plant with
 CO₂ capture

Concentrated solar power

Examples

- (Advanced) nuclear

Biomass-fired combined cycle:

Examples

Enhanced geothermal systems

1st law for closed and open systems

• Energy conservation for **open** systems:

$$\Delta E = \Delta U + \Delta P E + \Delta K E = Q_{12} - W_{12} + E_{\rm in} - E_{\rm out}$$

of the energy contained within the control volume at time *t*

net rate of energy
transferred in across
system boundary by heat transfer
at time *t*

net rate of energy
transferred out across
system boundary by work transfer
at time *t*

net rate of energy
transfered into the
control volume
accompanying mass flow

1st law for open systems

- Energy conservation for open systems: (i.e. with mass transfer / enthalpy)
 - Requires mass conservation:

$$\frac{dm_{\rm cv}}{dt} = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e}$$

Energy conservation:

$$\frac{dE_{CV}}{dt} = \dot{Q} - \dot{W} + \sum_{i} \dot{m}_{i} \left(u_{i} + \frac{w_{i}^{2}}{2} + gz_{i} \right) - \sum_{e} \dot{m}_{e} \left(u_{e} + \frac{w_{e}^{2}}{2} + gz_{e} \right)$$
(w = fluid speed)

$$\frac{dE_{CV}}{dt} = \dot{Q}_{cv} - \dot{W}_{cv} + \sum_{i} \dot{m}_{i} \left(h_{i} + \frac{w_{i}^{2}}{2} + gz_{i} \right) - \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{w_{e}^{2}}{2} + gz_{e} \right)$$
effective effective to the contraction of the con

enthalpy h = u + pV (work term due to mass transfer in/out))

(cv : control volume)

1st law for closed and open systems

- Energy conservation for open systems, applications:
 - Nozzle, diffusor

$$h_i + \frac{w_i^2}{2} = h_e + \frac{w_e^2}{2}$$

(w = fluid speed)

Throttling valves

$$h_i = h_e$$

$$h = u + Pv$$

$$P_i > P_e => v_i < v_e => w_i < w_e$$

1st law for closed and open systems

- Energy conservation for open systems, applications:
 - Turbine, compressor, pump, fan

$$0 = -\dot{W} + \dot{m} \left(h_i + \frac{w_i^2}{2} + gz_i \right) - \dot{m} \left(h_e + \frac{w_e^2}{2} + gz_e \right)$$

GE, LM2500 gas turbine, ships, ca. 30 MW

Voith-Kaplan turbine, 200 MW, diameter 10.5m

Heat exchanger

$$0 = \sum_{\text{inlets}:i} \dot{m}_i h_i - \sum_{\text{outlets}:j} \dot{m}_j h_j$$

GE, Roots* API 617 OIB

Efficiency

- Energy efficiency or performance metric can be introduced for single components or complete systems
 - Always need a proper definition!
 - Indicates how well a energy conversion or transfer process is accomplished
- General:

$$Efficiency = \frac{desired output}{required input}$$

Efficiency

• Example - Efficiency of *combustion devices*:

Efficiency of combustion processes is related to the *heating value of a fuel*, which is the amount of heat released when a unit amount of fuel at room temperature is completely burned and the combustion products are cooled to room temperature.

• Combustion efficiency:

$$\eta_{\text{combustion}} = \frac{\text{amount of heat released during combustion}}{\text{heating value of the fuel burned}}$$

$$= \frac{\dot{Q}}{\dot{Q}}$$

- Heating values (HV):
 - Higher heating values (HHV):water is condensed (furnaces etc.)
 - Lower heating values (LHV):
 water is vapor (cars, jet engines, etc.)

Fuel	HHV MJ/kg	LHV MJ/kg
Hydrogen	141.80	119.96
Methane	55.50	50.00
Ethane	51.90	47.80
Propane	50.35	46.35
Butane	49.50	45.75
Gasoline	47.30	44.4
Kerosene	46.20	43.00
Diesel	44.80	43.4
Coal (Anthracite)	32.50	
Coal (Lignite)	15.00	
Wood	21.7	

Processes and Cycles

- Definitions:
 - Process: special types of processes
 - Isothermal (*T* = constant)
 - Isobaric (p = constant)
 - Isochoric (v = constant)
 - Isentropic (s = constant)
 - Adiabatic (Q = 0)
 - Cycle: series of processes that return system to initial state
 - E.g. 4-stroke engine

(TDC: top dead center)

(BDC: bottom dead center)

Energy for closed systems

• Cycle analysis:

$$\Delta E = 0 = Q_{\text{cycle}} - W_{\text{cycle}}$$

– Power cycles:

$$\eta_{\text{th}} = \frac{W_{\text{cycle}}}{Q_{\text{in}}} = 1 - \frac{|Q_{\text{out}}|}{Q_{\text{in}}}$$

$$\begin{aligned} \text{COP}_{\text{cm}} &= \frac{Q_{\text{in}}}{\left|W_{\text{cycle}}\right|} = \frac{Q_{\text{in}}}{\left|Q_{\text{out}}\right| - Q_{\text{in}}} \\ &= \frac{Q_{\text{out}}}{\left|Q_{\text{out}}\right| - Q_{\text{in}}} \end{aligned}$$

$$\begin{aligned} \text{COP}_{\text{hm}} &= \frac{Q_{\text{out}}}{W_{\text{cycle}}} = \frac{\left|Q_{\text{out}}\right|}{\left|Q_{\text{out}}\right| - Q_{\text{in}}} = \text{COP}_{\text{cm}} + 1 \end{aligned}$$

2nd law of thermodynamics

• It is impossible for a system to operate in such a way that the only result would be an energy transfer by heat from a cooler to a hotter body.

• It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of energy by work to its surrounding while receiving energy by heat transfer from a single thermal reservoir.

• It is impossible for any system to operate in a way that entropy is destroyed.

$$S_2 - S_1 = \sum_j \frac{Q_j}{T_j} + \sigma$$
 \begin{cases} >0 irreversibilities \ =0 no irreversibilities \ <0 impossible \end{cases}

Entropy balance – closed systems

change in the
amount of entropy
contained within system
during time interval

[net amount of entropy]transferred in acrosssystem boundaryduring time interval

amount of entropy
produced within
system during
time interval

• General:

$$S_{2} - S_{1} = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{b} + \sigma = \sum_{j} \frac{Q_{j}}{T_{j}} + \sigma \qquad \frac{dS}{dt} = \sum_{j} \frac{\dot{Q}_{j}}{T_{j}} + \dot{\sigma}$$

• Internally reversible processes:

$$S_{2} - S_{1} = \left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{\text{int rev}} \qquad \frac{dS}{dt} = \left(\sum_{j} \frac{\dot{Q}_{j}}{T_{j}}\right)_{\text{int rev}}$$

Entropy balance – open systems

• Simplifications for steady systems or system with only one inlet/outlet

Isentropic processes

- Isentropic means constant entropy.
- Isentropic processes are processes where the entropy at the initial and final state are equal.
- Isentropic processes, e.g.: closed system, reversible and adiabatic process

• Isentropic (turbine) efficiencies:

$$\eta_{\text{t,s}} = \frac{\dot{W} / \dot{m}}{\left(\dot{W} / \dot{m}\right)_{\text{s}}} = \frac{h_1 - h_2}{h_1 - h_{2,\text{s}}}$$

Carnot cycle

- Carnot cycle:
 cycle that undergoes four reversible processes
- Two isothermal processes at two different temperature levels.
 Require heat to be delivered or rejected
- Two isentropic processes

- Reverse direction: refrigeration or heat pump cycle
- Efficiency given by Carnot efficiency or COP

Carnot efficiency

Maximum efficiencies of power and refrigeration/heat pump cycles:

Efficiency independent of process, components, fluids, only dependent on temperature of reservoirs Best case -> exergy efficiency = 1 -> delivered work equals received heat exergy

Max.

efficiency

(Carnot)

Consequences of the 2nd Law

Practical implications from the second law:

- Increase the temperature differences of the engine cycles. (Superposed cycles, increased higher temperature)
- Limit the temperature drop during heat transfer (Increase the heat exchange surfaces (but take care of the pressure drop), counter current heat exchange)
- Multiply the use of a same thermal source (Cogeneration, heat exchanger cascade, extraction in turbine, superposed cycles)

Exergy

• What is the potential for use?

Exergy

• Exergy – definition:

$$Ex = U - U_0 + KE + PE - T_0(S - S_0) + p_0(V - V_0)$$

Specific exergy:

$$ex = u - u_0 + ke + pe - T_0(s - s_0) + p_0(v - v_0)$$

• Exergy difference between two states:

$$Ex_2 - Ex_1 = (U_2 - U_1) + (KE_2 - KE_1) + (PE_2 - PE_1) - T_0(S_2 - S_1) + p_0(V_2 - V_1)$$

• Specific exergy difference between two states:

$$ex_2 - ex_1 = (u_2 - u_1) + (ke_2 - ke_1) + (pe_2 - pe_1) - T_0(s_2 - s_1) + p_0(v_2 - v_1)$$

Exergy balance - open systems

• Open systems – Exergy:

• With flow exergy:

$$ex_{f} = u - u_{0} + ke + pe - T_{0}(s - s_{0}) + p_{0}(v - v_{0}) + (p - p_{0})v$$

$$ex_{f} = h - h_{0} + ke + pe - T_{0}(s - s_{0})$$

$$ex_{f} = ex + (p - p_{0})v$$

Exergy efficiency

Exergy efficiency expresses the work-equivalent efficiency of energy resource utilization

$$\varepsilon_{ex} = \frac{\text{used exergy}}{\text{provided exergy}} \qquad \eta = \frac{\text{used energy}}{\text{provided energy}}$$
energy efficiency

- Components:
 - Turbine: $\varepsilon_{ex} = \frac{\left(W/\dot{m}\right)}{ex_{f,i} ex_{f,e}}$
 - Compressor/pump: $\varepsilon_{ex} = \frac{ex_{f,e} - ex_{f,i}}{\left(-\dot{W} / \dot{m}\right)}$
 - Heat exchanger: (non/mixing)

$$\varepsilon_{ex} = \frac{m_c(ex_{f,e,c} - ex_{f,i,c})}{m_h(ex_{f,i,h} - ex_{f,e,h})} \qquad \varepsilon_{ex} = \frac{m_2(ex_{f,3} - ex_{f,2})}{m_1(ex_{f,1} - ex_{f,3})}$$

Power systems

• Produce net power output from a energy source, such as fossil fuel, nuclear, solar, biomass,...

- Three major types of systems:
 - Vapor power plants (working fluid alternately vaporizes and condenses)
 - Gas turbine power plants (working fluid gas, series of components)
 - Internal combustion engines (working fluid gas, reciprocating)

- Vapor power systems:
 - Water is the working fluid, which alternately vaporizes and condenses
 - Majority of electrical power generation done by these systems
 - Basic components in a simplified system are:
 - Boiler
 - Turbine
 - Condenser
 - Pump

- Idealized *Rankine* cycle:
 - Turbine: *isentropic* expansion

$$\dot{W_{\rm t}} / \dot{m} = (h_1 - h_2)$$

- Condenser: isobaric heat transfer

$$\dot{Q}_{\rm out} / \dot{m} = (h_3 - h_2)$$

- Pump: *isentropic* compression

$$\dot{W}_{\rm p} / \dot{m} = (h_3 - h_4)$$

- Boiler: *isobaric* heat transfer

$$\dot{Q}_{\rm in} / \dot{m} = (h_1 - h_4)$$

- Efficiency:

$$\eta = \frac{\dot{W_{t}} / \dot{m} + \dot{W_{p}} / \dot{m}}{\dot{Q}_{in} / \dot{m}} = \frac{(h_{1} - h_{2}) + (h_{3} - h_{4})}{(h_{1} - h_{4})}$$

- Idealized Rankine cycle: effects of components on performance:
 - Increase of average temperature at which energy is added and decrease of average temperature at which energy is rejected leads to increased efficiency (Carnot):

$$\eta_{\text{ideal}} = \frac{(\dot{Q}_{\text{in}} / \dot{m})_{\text{int,rev}} - (\dot{Q}_{\text{out}} / \dot{m})_{\text{int,rev}}}{(\dot{Q}_{\text{in}} / \dot{m})_{\text{int,rev}}} = 1 - \frac{T_{\text{out}}}{\overline{T}_{\text{in}}}$$

Increase in boiler pressure and decrease in condenser pressures:

- Rankine cycle: improving performance:
 - Superheating (using additional heat exchanger, combination of boiler and heat exchanger is called steam generator)

Protects turbine (higher vapor quality x) & increases efficiency (higher T)

- Rankine cycle: improving performance:
 - Reheating

- Rankine cycle: improving performance:
 - Regeneration viaopen feedwater heater

closed feedwater heater

Real steam plant example:

Real steam plant example:

- 2 * 150 MW_e
- 8 extractions
- 1 reheater;
 for feed-water at HP
 and LP
- 5 turbines(1 HP, 1 MP, 3 LP)
- 2 cooling towers

$$\varepsilon_{Turbogroup} = 75\%$$

$$\varepsilon_{Boiler} = 52\%$$

$$\varepsilon_{\text{Plant}} = \varepsilon_{\text{TG}} \cdot \varepsilon_{\text{Boiler}} = 39\%$$

= the main exergy loss (large T drop) \longleftrightarrow 1st law : 94%

Co-generation

- Power and heat:
 - steam extraction to HEX for district heating (70°C)
 - output service: power E⁻ and transformation Y_{D⁻}

Intake

Spark ignition or compression ignition

- Air-standard analysis:
 - Fixed amount of air modeled as ideal gas
 - Combustion modeled by heat transfer from external source
 - No exhaust and intake strokes.
 Constant volume heat rejection
 - Internally reversible processes

- Air-standard Otto cycle:
 - 1-2: Isentropic compression

$$\frac{W_{12}}{m} = u_1 - u_2 \tag{<0}$$

- 2-3: Constant-volume heat transfer

$$\frac{Q_{23}}{m} = u_3 - u_2$$

- 3-4: Isentropic expansion

$$\frac{W_{34}}{m} = u_3 - u_4$$

4-1: Constant-volume heat rejection

$$\frac{Q_{41}}{m} = u_1 - u_4 \tag{<0}$$

- Cycle efficiency:
$$\eta = \frac{W_{\text{cycle}}}{Q_{23}} = \frac{u_3 - u_4 + u_1 - u_2}{u_3 - u_2}$$

Compression ratio: $r = \frac{V_1}{V_2} = \frac{V_4}{V_3}$

- Air-standard Diesel cycle:
 - 1-2: Isentropic compression

$$\frac{W_{12}}{m} = u_1 - u_2$$

- 2-3: Constant-pressure heat transfer

$$\frac{W_{23}}{m} = p_2(v_3 - v_2) \qquad \frac{Q_{23}}{m} = u_3 - u_2 + \frac{W_{23}}{m}$$

- 3-4: Isentropic expansion

$$\frac{W_{34}}{m} = u_3 - u_4$$

4-1: Constant-volume heat rejection

$$\frac{Q_{41}}{m} = u_1 - u_4$$

- Cycle efficiency:

$$\eta = \frac{W_{\text{cycle}}}{Q_{23}} = \frac{h_3 - h_2 - u_4 + u_1}{h_3 - h_2}$$

Compression ratio: $r = \frac{V_1}{V_2} = \frac{V_4^a}{V_3}$

Cut-off ratio:

Gas turbine power plants

• Gas turbine systems:

Fuel

• Air-standard Brayton cycle (ideal):

- 1-2: Isentropic compression
$$\frac{\dot{W}_{12}}{\dot{m}} = h_1 - h_2$$

- 2-3: Isobaric heat transfer
$$\frac{Q_{23}}{m} = h_3 - h_2$$

- 3-4: Isentropic expansion
$$\frac{\dot{W}_{34}}{\dot{m}} = h_3 - h$$

- 4-1: Isobaric heat transfer
$$\frac{Q_{41}}{m} = h_1 - h_2$$

Cycle efficiency:

$$\eta = \frac{W_{\text{cycle}}}{Q_{23}} = \frac{h_3 - h_4 + h_1 - h_2}{h_3 - h_2}$$

Gas turbine power plants

• Air-standard Brayton cycle: pressure ratio effect on performance

- Efficiency increases with increasing pressure ratio

Compressor pressure ratio

- Regeneration:

- Reheating and intercooling:

- Ericsson and Stirling cycle (both with same features as Carnot):
 - In the limit of large
 number of multi-stage
 compression with inter cooling, and multi-stage
 expansion with re-heating,
 with ideal regeneration

 $T_{\text{TH}} = 2 \text{ isothermes}$ p = c $T_{\text{C}} = 2 \text{ isothermes}$ p = c $T_{\text{C}} = 2 \text{ isothermes}$

Cycle with regeneration,
 internally reversible,
 internal heat transfer
 processes → Stirling cycle

Ericsson cycle

Combined cycle (CC)

- Gas cycle + steam cycle
- Fuels: oil, natural gas, gasified coal fuels
- GT on top of ST ('topping cycle') reduces the exergy heat transfer loss between fuel combustion gases and steam
- <u>ST below the GT ('bottoming cycle')</u> reduces transformation exergy loss of the hot GT exhaust gas (450-650°C)
- → 'win'-'win' combination between both cycles
- → The individual cycles in a CC configuration find themselves <u>simplified</u> with respect to their stand-alone configurations:
 - for the GT: obviously no regenerator! (it becomes the steam heater)
 - for the ST: almost no steam extraction

Combined gas-steam cycle in *T-s* diagram

Layout

(no cogen.)

Efficiency evolution and perspectives

(T. Kaiser, Alstom)

Steam *P-T* diagram for various cycle applications

Concentrated Solar Power - Centralized

• Traditional Rankine cycle:

Concentrated Solar Power - Decentralized

• Stirling cycle:

Low temperature heat sources

- For geothermal, waste heat, non- / low-concentrated solar:
 - temperatures too low for water as HTF (heat transfer fluid)
 - instead using fluid with different critical parameters

HTF for ORC

- Choice depends on:
 - Flammability and toxicity
 depending on security of the site
 - ODP and GWP for the environment
 - Stability
 - Authorization for the fluid

(ODP ozone depletion potential) (GWP global warming potential)

	R245 fa	R152A	R32	Pen- tane	Iso- Butane	Toluene
Saturated pressure at 120℃ (bar)	19.2	42	58	9	28	1.3
Service temperature (\mathfrak{C})	140	140	140	140	140	140
Saturated pressure at 50℃ (bar)	3.5	11	31	1.6	6.8	0.1
Expander pressure ratio	5.6	3.6	1.8	5.7	4.1	10.7
Ozone Depletion Potential	0	0	0	0	0	0
Global Warming Potential	950	140	675	7	3	3
ASHRAE Safety group	B1	A2	A2L	А3	А3	А3
Power density [kW/Exp]	16	26	16	8	21	1.4

ORC example

• Biomass: working fluid silicone oil

ORC example

Geothermal

Refrigeration and heat pump systems

- Refrigeration and heat pump
 - Maintain cold temperature below temperature of surrounding
 - Maintain high temperature above temperature of surrounding

Vapor-compression refrigeration system

- Practical refrigeration/heat pump cycle, ideal:
 - 1-2: Isentropic compression

$$\frac{W_{\rm c}}{\dot{m}} = h_1 - h_2$$

- 2-3: Isobaric heat rejection

$$\frac{\dot{Q}_{\text{out}}}{\dot{m}} = h_3 - h_2$$

- 3-4: throttling process

$$h_3 = h_4$$

4-1: Isobaric heat addition

$$\frac{\dot{Q}_{\rm in}}{\dot{m}} = h_1 - h_4$$

- Coefficient of performance:
$$COP_{cm} = \frac{h_1 - h_4}{h_2 - h_1} < COP_{cm,max}$$

$$COP_{hm} = \frac{h_2 - h_3}{h_2 - h_1} < COP_{hm,max}$$
Haussener - RE | Mar, 2022

Gas refrigeration systems

- Gas refrigeration systems, Brayton refrigeration cycle
 - 1-2(s): (Isentropic) compression

$$\frac{\dot{W}_{c}}{\dot{m}} = h_1 - h_2$$

- 2-3: Isobaric cooling

$$\frac{\dot{Q}_{\text{out}}}{\dot{m}} = h_3 - h_2$$

- 3-4(s): (Isentropic) expansion

$$\frac{\dot{W_{\rm t}}}{\dot{m}} = h_3 - h_4$$

4-1: Isobaric evaporation

$$\frac{\dot{Q}_{\rm in}}{\dot{m}} = h_1 - h_4$$

m - Coefficient of performance:

$$COP_{cm} = \frac{h_1 - h_4}{|h_1 - h_2 - (h_3 - h_4)|}$$

- Heat pump system:
 - Common application: space heating
 - Vapor-compression as well as absorption heat pumps

• Carnot heat pump cycle:

- Performance:

$$COP_{hm,max} = \frac{\dot{Q}_{out} / \dot{m}}{\left| \dot{W}_{c \atop compressor} / \dot{m} - \dot{W}_{t \atop turbine} / \dot{m} \right|} = \frac{T_{H}(s_{a} - s_{b})}{(T_{H} - T_{C})(s_{a} - s_{b})}$$
$$= \frac{T_{H}}{T_{H} - T_{C}}$$

Vapor-compression heat pumps:

Vapor-compression heat pumps:

$$- 1-2: \frac{\dot{W}_{c}}{\dot{m}} = h_{1} - h_{2}$$

- 2-3:
$$\frac{\dot{Q}_{\text{out}}}{\dot{m}} = h_3 - h_2$$

- 3-4:
$$h_3 = h_4$$

$$- 4-1: \quad \frac{\dot{Q}_{\text{in}}}{\dot{m}} = h_1 - h_4$$

- Performance:
$$COP_{hm} = \frac{\dot{Q}_{out} / \dot{m}}{\dot{W}_{c} / \dot{m}} = \frac{h_2 - h_3}{h_2 - h_1}$$

Heat pump

The largest heat pump (for District heating): 3 compression stages

Goteborg: 45 MW_{th}

Absorption heat pump

- Idea: achieve the pressure raise from low (BP) → high (HP) not by a compressor, but by the desorption (using a heat source) of a working fluid from its solvent, in which this working fluid had previously been absorbed (rejecting heat during absorption)
 - e.g. working fluid NH₃ with water as solvent
 - e.g. working fluid water with LiBr as solvent

often low temperature (~100°C), ideal for many renewables

Absorption heat pump

- absorber (water): receives low p NH₃ vapor (BP)
- ⇒ liberates absorption heat (H)
- liquid pump BP→HP
- boiler: delivers the absorption heat (G) to desorb the NH₃ vapor → HP
- expander (liq.) HP→BP
- internal heat exchanger between the 'rich' and 'poor' solutions (in NH₃)
- tubing

replaces a compressor

Learning outcomes

- Introduction into thermodynamics:
 - 1st law for closed and open systems
 - 2nd law for closed and open systems, entropy definition
 - Exergy
 - State functions
- Exemplary thermodynamic power systems:
 - Power systems:
 - Vapor power systems
 - Gas power systems:
 - Internal combustion engines
 - Gas turbine power plants
- Examples of relevant power cycles for renewable sources
- Examples thermodynamic cooling and heating systems:
 - Refrigeration and heat pump systems

