Exercice 1. 1. Wrong, for example, one can see that for the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$, the image of the ideal $(2) \subseteq \mathbb{Z}$ is not an ideal in \mathbb{Q}.
2. Correct according to Lemma 1.4.30.

Exercice 2.

Assume that $\xi_{p}^{-1}(I)$ is principal, meaning that $\xi_{p}^{-1}(I)=(f)$ for some $f \in \mathbb{Z}[t]$. Since I is by definition an additive group, it contains 0 , and therefore $p \in \xi_{p}^{-1}(I)=\mathbb{Z}[t] \cdot f$. It follows that $p=g \cdot f$ for some $g \in \mathbb{Z}[t]$. We recall that by Exercise 5 on Sheet $2, \operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. It follows that

$$
0=\operatorname{deg}(p)=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g) .
$$

Therefore, $\operatorname{deg}(f)=0$ and $\operatorname{deg}(g)=0$ and so $f, g \in \mathbb{Z}$. But then $p=g \cdot f$. Since p is prime, it follows that either $f= \pm 1$ or $f= \pm p$. If $f= \pm 1$, then $I=\mathbb{F}_{p}[t]$. If $f= \pm p$, then $I=\{0\}$. Those are contradictions to the assumption and therefore, $\xi_{p}^{-1}(I)$ is not principal.

Exercice 3. 1. Identité de Bézout. Let d be the biggest common divisor of m and n. Define the set $E:=\{c m+d n \mid c, d \in \mathbb{Z}\}$. Let $e=a m+b n$ be the smallest non-zero positive integer in E. Dividing n by e with rest, we get $n=q e+r$ for some $q \in \mathbb{Z}, 0 \leq r<e$. Then

$$
r=n-q e=n-q(a m+b n)=\underbrace{(-q a)}_{\in \mathbb{Z}} m+\underbrace{(1-q b)}_{\in \mathbb{Z}} n \in E .
$$

But since $r<e$, it follows that $r=0$, and therefore $e \mid n$. Similarly, we show that $e \mid m$. It follows that e is a common divisor of m and n. It remains to show that e is indeed the biggest common divisor. Since $d \mid m$ and $d \mid n$, it holds that $d \mid(a m+b n)=e$, and hence $e=d$.
2. We have

- $(m)(n)=(m n)$ by Remarque 1.4.28.
- $(m)+(n)=(m, n)$ by Remarque 1.4.28. According to Bézout, this is equal to (d).
- $(m) \cap(n)=(\operatorname{ppmc}\{m, n\})$. The inclusion \supseteq holds due the definition, which states that $(m) \cap(n)$ contains elements that are simultaneously in (m) and (n), which means that they are simultaneously multiples of (m) and of (n). For the other inclusion, let k be an element contained in $(m) \cap(n)$. That means that k is a multiple of both (m) and (n). Let p be the least common multiple of m and n. As in the first part of this exercise, we can divide k by p with rest, from which it follows that k is a multiple of p, and therefore $k \in(\operatorname{ppmc}\{m, n\})$.

Exercice 4.

Let $\iota_{A}: \mathbb{Z} \rightarrow A$ be the unique ring homomorphism with source \mathbb{Z}. By definition, $\operatorname{car}(A)=n$, where $\operatorname{ker}\left(\iota_{A}\right)=(n)$.

1. Consider the composition $\iota_{B}: \mathbb{Z} \xrightarrow{\iota_{A}} A \xrightarrow{f} B$. Since the kernel of the first homomorphism is contained in the kernel of the composition, it holds that $(n)=\operatorname{ker}\left(\iota_{A}\right) \subseteq \operatorname{ker}\left(\iota_{B}\right)=:(m)$, with m being $\operatorname{car}(B)$. Therefore, $m \mid n$, and so $\operatorname{car}(B) \mid \operatorname{car}(A)$.
In general, $\operatorname{car}(B) \neq \operatorname{car}(A)$, as one can see when considering the reductions modulo 2 , $f: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.
2. If f is injective, then its kernel is trivial, meaning that $\operatorname{ker}\left(\iota_{A}\right)=\operatorname{ker}\left(f \circ \iota_{A}\right)=\operatorname{ker}\left(\iota_{B}\right)$.
3. In order to show that F is a ring homomorphism, we show that $\forall a, b \in A$,

- $F(1)=1^{p}=1$,
- $F(a b)=(a b)^{p}=a^{p} b^{p}=F(a) F(b)$,
- lastly, $F(a+b)=(a+b)^{p}=a^{p}+b^{p}$. This holds due to the fact that A is commutative, and the fact that the binomial coefficients that would appear for expressions of the form $a^{i} b^{j}, i, j \neq 0, i, j \neq p$ are all divisible by p, and hence they are zero in A.

4. Denote by g the unique homomorphism $g: \mathbb{Z} \rightarrow \mathbb{Z}[i] /(i-2)$. The characteristic of $\mathbb{Z}[i] /(i-2)$ is $k \in \mathbb{Z}$, where $(k)=\operatorname{ker}(g)$. The kernel is $\operatorname{ker}(g)=\{n \in \mathbb{Z} \mid \exists a, b \in \mathbb{Z}$ s.t $n=(a+i b)(i-2)\}$. Let $n \in \mathbb{Z}$ be contained in the kernel. Then, with $a, b \in \mathbb{Z}$,

$$
n=(a+i b)(i-2)=(-2 a-b)+i(a-2 b)
$$

It follows that $n=-5 b$, and so $n \in(5)$. Conversely, for $m \in(5)$, we have $m=5 \alpha$ for some $\alpha \in \mathbb{Z}$ and $g(m)=g(5 \alpha)=g(5) g(\alpha)=0$. This shows that $\operatorname{ker}(g)=(5)$.

Exercice 5.

Let $A=\mathbb{Z} / 250 \mathbb{Z}$.

1. The zero divisors are the divisors of 250 and their multiples, stictly bigger than 1 . The divisors of 250 (1 excluded) are $2,5,10,25,50,125$ and 250 .

- For the divisor 2, we get 124 multiples, up to the last multiple 248.
- For the divisor 5, we get 49 multiples, up to the last multiple 245. However, as half of these multiples are even, they have already been counted as multiples of 2 . We get 25 new zero divisors.
- The remaining divisors $10,25,50$ and 125 are multiples of 5 and have therefore already been counted into those zero divisors.

Summing up, we get $124+25=149$ zero divisors.
The remaining 100 elements are all invertible. Such an element $x \in A$ is prime to 250 , meaning that x and 250 don't have any common divisors other than 1 . With Bézout's identity there are two $a, b \in \mathbb{Z}$ such that $1=a x+b \cdot 250$. With this, $a x \equiv 1 \bmod 250$.
2. By the correspondence described in Propositon 1.4.36, the ideals of $A=\mathbb{Z} / 250 \mathbb{Z}$ correspond to ideals of \mathbb{Z} which contain (250). Ideals of \mathbb{Z} are principal, of the form (n). With (250) \subseteq (n) we get that $n \mid 250$ and so $n=1,2,5,10,25,50,125$ and 250 . Additionally, if the ideal in A contains 50, then the ideals in \mathbb{Z} need to contain the preimage of the class [50]. In particular, they need to contain 50 . Hence n is reduced to $1,2,5,10,25,50$. The ideals in A are $A,([2]),([5]),([10]),([25])$ and $([50])$.

Exercice 6.

Soit A le sous-anneau de $M_{2}(\mathbb{Z})$ des matrices de la forme $\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)$ où $a, b, c \in \mathbb{Z}$. Montrer que le sous-ensemble K des matrices pour lesquelles $5 \mid a$ et $11 \mid b$ est un idéal bilatère et construire un isomorphisme (en deux temps) $A / K \rightarrow \mathbb{Z} / 5 \times \mathbb{Z} / 11$.

One verifies easily that the subset K is an additive subgroup, and that the product of a matrix in A and a matrix in K is a matrix in K, with multiplication in both directions. Therefore, K is a two-sided ideal.

To construct the isomorphism, we define the ideal I as

$$
I:=\left\{\left.\left(\begin{array}{ll}
0 & c \\
0 & 0
\end{array}\right) \right\rvert\, c \in \mathbb{Z}\right\} .
$$

Again, verifying that this is an ideal is easy. Since $I \subset K$, we may apply the Proposition 1.4.39 (Quotient en deux temps). Let $\xi: A \rightarrow A / I$. Then,

$$
A / K \cong(A / I) / \xi(K)
$$

We have that

$$
\xi(K)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)|a, b \in \mathbb{Z}, 5| a, 11 \mid b\right\}
$$

Furthermore, we note that A / I can be described as classes of matrices with representatives of the form $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ with $a, b \in \mathbb{Z}$. This is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ via the obvious isomorphism

$$
\phi: \begin{array}{ccc}
A / I & \rightarrow & \mathbb{Z} \times \mathbb{Z} \\
{\left[\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\right]} & \mapsto & (a, b)
\end{array}
$$

With $\phi, \xi(K)$ is sent to $(5) \times(11)$, and therefore, $(A / I) / \xi(K) \cong(\mathbb{Z} \times \mathbb{Z}) /((5) \times(11)) \cong \mathbb{Z} /(5) \times$ $\mathbb{Z} /(11)$.

Exercice 7. 1. We use Proposition 1.2.2. applied to the identity on $\mathbb{C}[y]$. The proposition then states that there exists a unique ring homomorphism $e v_{0}: \mathbb{C}[y][x] \rightarrow \mathbb{C}[y]$ s.t. $\quad i d_{\mathbb{C}[y]}=$ $\iota \circ e v_{0}$, where ι denotes the inclusion $\iota: \mathbb{C}[y] \rightarrow \mathbb{C}[y][x] . e v_{0}$ acts by sending a polynomial $p(x, y) \in \mathbb{C}[y][x] \cong \mathbb{C}[x, y]$ to $p(0, y) \in \mathbb{C}[y]$. One easily verifies that $e v_{0}$ is surjective, as the identity on $\mathbb{C}[y]$ is surjective. The kernel of $e v_{0}$ consists of all polynomials $p(x, y) \in \mathbb{C}[x, y]$ for which $p(0, y)=0$. These are exactly those polynomials that are multiples of x, and hence $\operatorname{ker}\left(e v_{0}\right)=(x)$. By the isomorphism theorem it follows that $\mathbb{C}[y] \cong \mathbb{C}[x, y] /(x)$.
2. As above, consider the two evaluations

$$
e v_{0, x}:=\begin{array}{ccc}
\mathbb{C}[x, y] & \rightarrow \mathbb{C}[y] \\
p(x, y) & \mapsto p(0, y)
\end{array}, \quad e v_{0, y}:=\begin{array}{cc}
\mathbb{C}[x, y] & \rightarrow \mathbb{C}[x] \\
p(x, y) & \mapsto p(x, 0)
\end{array}
$$

It holds that $\operatorname{ker}\left(e v_{0, y}\right)=(y)$. Using the universal property of products, Proposition 1.4.45, we get a unique homomorphism

$$
\phi: \begin{array}{ccc}
\mathbb{C}[x, y] & \rightarrow & \mathbb{C}[x] \times \mathbb{C}[y] \\
p(x, y) & \mapsto & (p(x, 0), p(0, y))
\end{array}
$$

The kernel of ϕ is equal to $\operatorname{ker}\left(e v_{0, x}\right) \cap \operatorname{ker}\left(e v_{0, y}\right)=(x) \cap(y)=(x y)$.
3. We note that for a polynomial $p(x, y) \in \mathbb{C}[x, y]$ the constant term of $e v_{0, x}(p)$ and of $e v_{0, y}(p)$ is the same. This suggests that the image of ϕ is as stated. To show that every such element is in the image of ϕ, we let $p(x) \in \mathbb{C}[x]$ and $q(y) \in \mathbb{C}[y]$. Consider the pair $(a+x p(x), a+y q(y)) \in$ $\mathbb{C}[x] \times \mathbb{C}[y]$ with $a \in \mathbb{C}$. Then

$$
\phi(a+x p(x)+y q(y))=(a+x p(x), a+y q(y)) .
$$

Therefore, the pair $\left(a+x p_{x}(x), a+y p_{y}(y)\right)$ is contained in the image of ϕ. We conclude with the isomorphism theorem.

Exercice 8. 1. By the definition of a valuation we have that $\nu_{p}\left(q^{-1}\right)=0$ too, because $\nu_{p}(q)+$ $\nu_{p}\left(q^{-1}\right)=\nu_{p}(1)=0$. Therefore $q^{-1} \in R$ and q is invertible.
2. The zero ideal is trivially an ideal of R. Now, take a non-zero ideal I, and let n be the smallest valuation that appears among the elements of I. Then there is an element of the form $y=p^{n} q$, where q is a unit. Take now any $x \in I$ non-zero. Then $\nu_{p}(x / y) \geq 0$, again by the properties of valuations and by the minimality of n, hence $x / y \in R$, and hence $I=(y)$
3. Consider the composition $\phi: \mathbb{Z} \rightarrow R \rightarrow R /\left(p^{n}\right)$. Where the first map is the inclusion and the second one is the quotient map. Then we can apply the isomorphism theorem to \mathbb{Z}, because
a) ϕ is surjective because let $a / b \in R$ (with $a, b \in \mathbb{Z}$ and $p \nmid b$). Then we can write $c p^{n}+d b=1$ for some $c, d \in \mathbb{Z}$. Hence $[d][b]=[1] \in R /\left(p^{n}\right)$. Hence, for every $\left[a b^{-1}\right]$ in $R /\left(p^{n}\right)$ we have $[a]\left[b^{-1}\right]=[a]\left[b^{-1}\right][b][d]=[a][d]=[a d]=\phi(a d)$.
b) The kernel of ϕ is generated by p^{n} as an ideal of \mathbb{Z}, because if x is in the kernel, that means that $x=(a / b) p^{n} \in R$, where a and b are as in the previous point. That is, $b x=a p^{n}$. Now, using that $p \nmid b$ we obtain that p^{n} divides $x \in \mathbb{Z}$.
4. From the previous points we know all the non-trivial ideals of R_{p} are of the form $\left(p^{n}\right)$ for some $n \in \mathbb{N}$, and we know that their quotient is isomorphic to $\mathbb{Z} /\left(p^{n}\right)$. If R_{p} and R_{q} were isomorphic for two different prime numbers p and q, there would be isomorphism between their quotients. This is impossible because $\mathbb{Z} / p^{m} \mathbb{Z}$ and $\mathbb{Z} / q^{n} \mathbb{Z}$ are not isomorphic since their size is different (p^{m} and q^{n} respectively). Moreover, R_{p} is not isomorphic to \mathbb{Z}. Indeed, if we take q a prime number different from p, then $\mathbb{Z} / q \mathbb{Z}$ is a quotient of size q, and R_{p} has no quotients of such size.

