EPFL - Printemps 2023	Prof. Zs. Patakfalvi
Anneaux et Corps	Exercices
Série 4	20 mars 2023

Les exercices indiqués par une étoile ★ sont optionnels.

Exercice 1.

Dans chacun des cas suivants, déterminer si l'idéal proposé est premier ou maximal.

(a) $(0) \subset \mathbb{Z}$.

(f) $(t^2-2)\subset \mathbb{Z}[t]$.

(b) $(t) \subset \mathbb{Z}[t]$.

(g) $(t^2-2) \subset \mathbb{R}[t]$.

(c) $(t) \subset \mathbb{R}[t]$.

(h) $(t+5,10) \subset \mathbb{Z}[t]$.

(d) $(101) \subset \mathbb{Z}[t]$.

(i) $(t+5,11) \subset \mathbb{Z}[t]$.

(e) $(42) \subset \mathbb{Z}[t]$.

(j) $(t^2 + 1, 2) \subset \mathbb{Z}[t]$.

Indication : Pour prouver qu'un idéal bilatère $I \subset A$ est premier, il suffit de montrer que le quotient A/I est intègre.

Exercice 2. 1. Discuter les systèmes suivants : $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 7 \pmod{12} \end{cases}$ et $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 8 \pmod{12} \end{cases}$

2. Montrer que $\mathbb{Z}/36\mathbb{Z}$ n'est pas isomorphe à $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$.

Exercice 3. 1. Soit $f: A \to B$ un homomorphisme d'anneaux surjectif tel que ker $f = (a_1, \ldots, a_m)$ pour certains $a_1 \ldots, a_m \in A$. Soit aussi $I = (b_1, \ldots, b_n) \subseteq B$ un idéal à gauche. Si $c_1, \ldots, c_n \in A$ sont tels que $f(c_i) = b_i$ pour chaque i, montrez que $f^{-1}(I) = (a_1, \ldots, a_m, c_1, \ldots, c_n)$.

2. Soit k un corps, $a, b \in k$ et considérons les homomorphismes d'anneaux k-linéaires

$$\operatorname{ev}_b \colon k[x,y] \to k[x], \ x \mapsto x, \ y \mapsto b$$
 et $\operatorname{ev}_a \colon k[x] \to k, \ x \mapsto a$

et

$$\xi := \operatorname{ev}_a \circ \operatorname{ev}_b \colon k[x, y] \longrightarrow k.$$

Montrez que $\ker \xi = (x - a, y - b)$ et que $\ker \xi$ est un idéal maximal de k[x, y].

On peut en fait montrer que si k est algébriquement clos, alors tous les idéaux maximaux de k[x,y] sont de cette forme. C'est une conséquence du Nullstellensatz d'Hilbert.

Exercice 4.

Dans cet exercice, nous étudions les anneaux $\mathbb{Z}[i]/(p)$ pour p un nombre premier. Nous écrirons $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

1. Montrez que $\mathbb{Z}[i]/(p) \cong \mathbb{F}_p[t]/(t^2+1)$. Indication: Combinez l'exemple 2.4.19 et le quotient en deux temps.

2. Pour p = 5, montrez que $\mathbb{Z}[i]/(5) \cong \mathbb{F}_5 \times \mathbb{F}_5$. Indication: Le théorème des restes chinois peut être utile.

3. Sous quelles conditions sur p a-t-on un isomorphisme d'anneaux $\mathbb{Z}[i]/(p) \cong \mathbb{F}_p \times \mathbb{F}_p$?

Indication: Si besoin, vous pouvez admettre l'existence d'une clôture algébrique de \mathbb{F}_p .

Exercice 5.

Soient A et B deux anneaux commutatifs. Quels sont les idéaux de $A \times B$? Quels sont les idéaux premiers de $A \times B$?

Exercice 6 (\star) .

Soit R un anneau commutatif. Déterminer $(R[t])^{\times}$.

On pourra se ramener au cas intègre en quotientant par des idéaux premiers de R.

Exercice 7 (* Introduction aux opérateurs différentiels).

Soit A un anneau commutatif. Notons que s'il existe un homomorphisme d'anneaux injectif $K \hookrightarrow A$ où K est un corps, alors A a la structure d'un K-espace vectoriel. D'ailleurs, pour V un K-espace vectoriel,

$$\operatorname{End}_K(V) := \{ \phi : V \to V \mid \phi \text{ est } K \text{ linéaire} \}$$

est un anneau, avec l'addition et la composition de fonctions comme opérations. On définit le **crochet de Lie** sur $\operatorname{End}_K(V)$ de la manière suivante :

$$\operatorname{End}_{K}(V) \times \operatorname{End}_{K}(V) \to \operatorname{End}_{K}(V)$$
$$(\phi, \psi) \mapsto [\phi, \psi] := \phi \circ \psi - \psi \circ \phi$$

Supposons maintenant que A est un anneau commutatif tel que $K \hookrightarrow A$ où K est un corps. Nous désignons par $m_a \in \operatorname{End}_K(A)$ la multiplication par un élément $a \in A$,

$$m_a: \begin{array}{ccc} A & \rightarrow & A \\ x & \mapsto & ax \end{array}.$$

Nous définissons les opérateurs K-différentiels sur A de degré au plus n inductivement par :

- $D_{<-1}(A) = \{m_0\},\$
- $D_{\leq 0}(A) = \{m_a \mid a \in A\},\$
- pour n > 0, posons $D_{\leq n}(A) = \{ \psi \in \operatorname{End}_K(A) \mid [\psi, m_a] \in D_{\leq n-1}(A) \ \forall a \in A \}.$

Remarquez que $D_{\leq n}(A) \subseteq D_{\leq n+1}(A)$. On définit

$$D(A) := \bigcup_{n \ge -1} D_{\le n}(A) \subset \operatorname{End}_K(A).$$

Montrer que D(A) est un sous-anneau de $\operatorname{End}_K(A)$. On remarque que $K \ni \lambda \mapsto m_\lambda \in D_{\leq 0}(A)$ est le plongement de K dans D(A) qui donne la structure d'espace vectoriel sur K.

A partir de maintenant, nous considérons le cas A = K[x].

1. Montrer que le crochet de Lie

$$\begin{array}{ccc} D(K[x]) \times D(K[x]) & \to & D(K[x]) \\ (F,G) & \mapsto & [F,G] \end{array}$$

est K-bilinéaire.

- 2. Soit $\frac{\partial}{\partial x} \in \text{End}_K(K[x])$ défini par $\frac{\partial}{\partial x}(x^i) = i \cdot x^{(i-1)}$ pour tout $i \in \mathbb{N}$. Montrez que $\left[\frac{\partial}{\partial x}, m_x\right] = m_1$.
- 3. Prenons $\frac{\partial}{\partial x}$ comme au-dessus. Montrez que $\left[\frac{\partial}{\partial x}, m_{x^j}\right] = j \cdot m_{x^{(j-1)}}$ pour $j \in \mathbb{N}$.
- 4. Prenons $\frac{\partial}{\partial x}$ comme au-dessus. Montrez que $\frac{\partial}{\partial x} \in D_{\leq 1}(K[x])$.