Homework 4

Exercise 1*. Let $\lambda>0$ and X be a random variable whose characteristic function ϕ_{X} is given by $\phi_{X}(t)=\exp (-\lambda|t|), \quad t \in \mathbb{R}$.
a) What can you deduce on the distribution of X from each of the following facts?
i) ϕ_{X} is not differentiable in $t=0$.
ii) $\int_{\mathbb{R}}\left|\phi_{X}(t)\right| d t<+\infty$.
b) Use the inversion formula seen in class to compute the distribution of X.
c) Let $Y=\frac{1}{X}$. Using the change of variable formula (not worrying about the fact that X might take the value 0 , as this is a negligible event), compute the distribution of Y.
d) Let now X_{1}, \ldots, X_{n} be n independent copies of the random variable X. What are the distributions of

$$
Z_{n}=\frac{X_{1}+\ldots+X_{n}}{n} \quad \text { and } \quad W_{n}=\frac{n}{\frac{1}{X_{1}}+\ldots+\frac{1}{X_{n}}} \quad ?
$$

e) What oddities do you observe in the results of part d)? (there are at least two)

Exercise 2. a) Let X_{1}, X_{2} be two independent Gaussian random variables such that $\operatorname{Var}\left(X_{1}\right)=$ $\operatorname{Var}\left(X_{2}\right)$. Show, using characteristic functions or a result from the course, that $X_{1}+X_{2}$ and $X_{1}-X_{2}$ are also independent Gaussian random variables.
b) Let X_{1}, X_{2} be two independent square-integrable random variables such that $X_{1}+X_{2}, X_{1}-X_{2}$ are also independent random variables. Show that X_{1}, X_{2} are jointly Gaussian random variables such that $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)$.

Note. Part b), also known as Darmois-Skitovic's theorem, is considerably more challenging than part a)! Here are the steps to follow in order to prove the result (but please skip the first two).

Step 1*. (needs the dominated convergence theorem, which is outside of the scope of this course) If X is a square-integrable random variable, then ϕ_{X} is twice continuously differentiable.

Step 2*. (quite technical) Under the assumptions made, $\phi_{X_{1}}$ and $\phi_{X_{2}}$ have no zeros (so $\log \phi_{X_{1}}$ and $\log \phi_{X_{2}}$ are also twice continuously differentiable, according to the previous step).

Step 3. Let $f_{1}=\log \phi_{X_{1}}$ and $f_{2}=\log \phi_{X_{2}}$. Show that there exist functions g_{1}, g_{2} satisfying

$$
f_{1}\left(t_{1}+t_{2}\right)+f_{2}\left(t_{1}-t_{2}\right)=g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right) \quad \forall t_{1}, t_{2} \in \mathbb{R}
$$

Step 4. If f_{1}, f_{2} are twice continuously differentiable and there exist functions g_{1}, g_{2} satisfying

$$
f_{1}\left(t_{1}+t_{2}\right)+f_{2}\left(t_{1}-t_{2}\right)=g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right) \quad \forall t_{1}, t_{2} \in \mathbb{R}
$$

then f_{1}, f_{2} are polynomials of degree less than or equal to 2. Hint: differentiate!
Step 5. If X is square-integrable and $\log \phi_{X}$ is a polynomial of degree less than or equal to 2 , then X is a Gaussian random variable.

Hint. If X is square-integrable, then you can take for granted that $\phi_{X}(0)=1, \phi_{X}^{\prime}(0)=i \mathbb{E}(X)$ and $\phi_{X}^{\prime \prime}(0)=-\mathbb{E}\left(X^{2}\right)$.
Step 6. From the course, deduce that X_{1}, X_{2} are jointly Gaussian and that $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(X_{2}\right)$.

