
Homework 5
CS-526 Learning Theory

Exercise 1 (from S. Boyd & J. Duchi)

For the following convex functions, explain how to calculate a subgradient at a given x.

1. ∀x ∈ Rn : f(x) = max1≤i≤m(a
T
i x+ bi), where ∀i ∈ {1, . . . ,m} : (ai, bi) ∈ Rn × R.

2. ∀x ∈ Rn : f(x) = max1≤i≤m |aT
i x+ bi|.

3. ∀x ∈ Rn : f(x) = supt∈[0,1] p(t,x), where p(t,x) = x1 + x2t+ · · ·+ xnt
n−1.

Exercise 2 (from S. Boyd & J. Duchi)

Convex functions that are not subdifferentiable. Verify that the following functions, defined
on the interval [0,+∞), are convex, but not subdifferentiable at x = 0.

1. f(0) = 1, and f(x) = 0 for x > 0

2. f(x) = −
√
x

Exercise 3

We recall the definition of a strongly convex function:

Definition 1 A function f is λ-strongly convex if for all w,u and α ∈ (0, 1) we have:

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2
α(1− α)∥w − u∥2 .

Theorem 14.11 in the textbook is a refined bound for Stochastic Gradient Descent (SGD)
when the function f is strongly convex. The proof of this theorem relies on the following
claim (Claim 14.10 in Understanding Machine Learning):

Claim 1 If f is λ-strongly convex then for every w, u and v ∈ ∂f(w) we have

⟨w − u,v⟩ ≥ f(w)− f(u) +
λ

2
∥w − u∥2

Prove this claim.
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Exercise 4

Let πC(x) = argminy∈C ∥x− y∥ denote the Euclidean projection of x onto a closed convex
set C of a Hilbert space H. Show that the projection is a 1-Lipschitz mapping, that is,

∥πC(x0)− πC(x1)∥ ≤ ∥x0 − x1∥ ,

for all vectors x0,x1 ∈ H. Show that the Lipschitz constant cannot be improved.
Hint: First prove the following important property of the projection onto a closed convex.

Lemma 1 If C is a non-empty closed convex subset of a Hilbert space H then

∀(x,y) ∈ H × C : ⟨x− πC(x),y − πC(x)⟩ ≤ 0 .
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