Homework 6 (2" graded homework): due Monday 17th April
(CS-526 Learning Theory

Exercise 1

M., (R) is the Hilbert space of n x n real matrices endowed with the inner product (A4, B) =
Tr(ATB). The induced norm is the Euclidian (or Frobenius) norm, i.e.,

n 12
1Al = Tr(ATA)=<Z(Aij)2> :

,j=1

Consider the cone of n x n symmetric positive semi-definite matrices, denoted S;7 C M,,(R).
For all A € §;, Amax(A) is the maximum eigenvalue associated to A. We define

A = Anax(4)

a) Show that f is convex.
b) Find a subgradient V' € 0f(A) for any A € S
Hint: A subgradient of f at A is a matrix V' € R™*" that satisfies:

VBeSH: f(B)> f(A)+Tr((B—A)"V).

Exercise 2 (adapted from 14.3, Understanding Machine Learning)

Let S = ((x1,¥1); -+ Xy Ym)) € (REx {—1,+1})™. Assume that there exists w € R? such
that for every i € [m] we have y;(w,x;) > 1, and let w* be a vector that has the minimal
norm among all vectors that satisfy the preceding requirement. Let R = max; ||x;||. Define
a function f(w) = max;em)(1 — yi(w, x;)).

a) Show that minWiHWHSHW*H f(W) =0.
b) Show that any w for which f(w) < 1 separates the examples in S
c¢) Show how to calculate a subgradient of f.

d) Describe a subgradient descent algorithm for finding a w that separates the examples.
Show that the number of iterations 7' of your algorithm satisfies
T < R*|lw"*.

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for
the analysis.
e) (Not graded) Compare your algorithm to the Batch Perceptron algorithm.
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Exercise 3

Consider the following Least Squares optimization problem:
* = arg min ]| Ax — b}
x* = arg min —||Ax —
& xe€R™ 2 v

where b € R™, A is a full column rank matrix in R™*" n < m and there exists a solution to
the linear system Ax = b. Let o, and o, be the largest and the smallest singular values
of A and consider the gradient descent method

x' =x' —aVf(xh)
with a fixed step size @ = 1/0ax(A4)%.

a) Show that opax (I — @ATA) =1 — aopn(A)? =1 — gsax((i);

b) Calculate the gradient V f(x) and rewrite the GD using this gradient.

c) Show that the procedure converges as

. A)2
1 _ |, < (] — Jmm<
||X X ||2 = ( Umax<A)2

" = x|z



