
Homework 6 (2nd graded homework): due Monday 17th April
CS-526 Learning Theory

Exercise 1

Mn(R) is the Hilbert space of n×n real matrices endowed with the inner product 〈A,B〉 =
Tr(ATB). The induced norm is the Euclidian (or Frobenius) norm, i.e.,

‖A‖ =
√

Tr(ATA) =

(
n∑

i,j=1

(Aij)
2

)1/2

.

Consider the cone of n×n symmetric positive semi-definite matrices, denoted S+
n ⊆ Mn(R).

For all A ∈ S+
n , λmax(A) is the maximum eigenvalue associated to A. We define

f :
S+
n → [0,+∞)
A 7→ λmax(A)

.

a) Show that f is convex.
b) Find a subgradient V ∈ ∂f(A) for any A ∈ S+

n .
Hint: A subgradient of f at A is a matrix V ∈ Rn×n that satisfies:

∀B ∈ S+
n : f(B) ≥ f(A) + Tr

(
(B − A)TV

)
.

Exercise 2 (adapted from 14.3, Understanding Machine Learning)

Let S = ((x1,y1), . . . , (xm,ym)) ∈ (Rd×{−1,+1})m. Assume that there exists w ∈ Rd such
that for every i ∈ [m] we have yi〈w,xi〉 ≥ 1, and let w⋆ be a vector that has the minimal
norm among all vectors that satisfy the preceding requirement. Let R = maxi ‖xi‖. Define
a function f(w) = maxi∈[m](1− yi〈w,xi〉).

a) Show that minw:∥w∥≤∥w⋆∥ f(w) = 0.

b) Show that any w for which f(w) < 1 separates the examples in S.

c) Show how to calculate a subgradient of f .

d) Describe a subgradient descent algorithm for finding a w that separates the examples.
Show that the number of iterations T of your algorithm satisfies

T ≤ R2‖w∗‖2.

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for
the analysis.
e) (Not graded) Compare your algorithm to the Batch Perceptron algorithm.
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Exercise 3

Consider the following Least Squares optimization problem:

x∗ = arg min
x∈Rn

1

2
||Ax− b||22,

where b ∈ Rm, A is a full column rank matrix in Rm×n, n ≤ m and there exists a solution to
the linear system Ax = b. Let σmax and σmin be the largest and the smallest singular values
of A and consider the gradient descent method

xt+1 = xt − α∇f(xt)

with a fixed step size α = 1/σmax(A)
2.

a) Show that σmax(I − αATA) = 1− ασmin(A)
2 = 1− σmin(A)2

σmax(A)2
.

b) Calculate the gradient ∇f(x) and rewrite the GD using this gradient.

c) Show that the procedure converges as

||xt+1 − x∗||2 ≤ (1− σmin(A)
2

σmax(A)2
)||xt − x∗||2.
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