Solutions to Homework 6 (graded)
(CS-526 Learning Theory

Exercise 1

a) Fix A,B € §; and a € [0,1]. Let e € R™ a unit-norm eigenvector of «A + (1 — a)B
associated to the maximum eigenvalue, i.e., (A + (1 — a)B)e = Apax(a@A + (1 — a)B)e and
le|l = 1. We have:
flaA+(1—a)B) =e'(aA+ (1 —a)B)e = ae’ Ae + (1 — a)e’ Be
S aAnlax(A) + (1 - Q{))\max(B)
— af(A) + (1-a)f(B).

This shows that f is convex.
b) Let A € S;F. A subgradient of f at A is a matrix V' € R™*" that satisfies:

VBeS!: f(B)> f(A)+Tx((B-A)"V).

Consider any e € R" which is a unit-norm eigenvector of A associated to the maximum
eigenvalue, i.e., Ae = A\yac(A)e and |le]| = 1. Then for all B € S;:

f(A) = Muax(A) = e"Ae = e' Be + e’ (A — B)e < Apax(B) + e’ (A — B)e
= f(B) + Tr(e' (A — Be)
= f(B)+Tr((A — B)'ee’).
In the last equality we used that (A — B)T = A — B and that the trace is preserved by cyclic
permutations. We see that ee’ satisfies the definition of a subgradient: ee” € df(A).
Exercise 2

a) minjw<jwe| f(W) < f(Ww*) < 0 because Vi € [m] : y;(w*,x;) > 1. Suppose there exists
w satisfying both ||w| < ||[w*|| and f(w) < 0. Then w can be slightly modify to obtain a
vector w such that ||w| < |[w*||, while still having f(w) < 0. It contradicts w*’s definition,
hence minjw<|w+| f(W) > 0. It proves minjwj<jw=| f(W) = 0.

b) If f(w) < 1 then Vi € [m] : y;(w*,x;) > 0, i.e., w separates the examples.

c) For all ¢ € [m] the gradient of f; : w — 1 — y;(w,x;) is —y;x;. Applying Claim 14.6,
we get that a subgradient of f at w is given by —y;«x;« where i* € arg max; ¢, {1—v:(W, x;) }.

d) The algorithm is inialized with w(®) = 0. At each iteration, if f(w®) > 1 then it
chooses i* € argmin;cp,, {1 (w®",x;)} and updates wi™) = w® 4+ ny;.x;.. Otherwise, if
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f (W(t)) < 1, w®) separates all the examples and we stop. To analyze the speed of convergence
of the subgradient algorithm, first notice that (w*, w1} — (w* w®)) = ny (W*, x5) > 7.
Therefore, after performing 7" iterations, we have

T
(W, wTHD) = (w*, W) — (w*, w) = (w*, w D) — (w, W) > T (1)

t=1
Besides, [[w V|2 = [[wO)2 + n22||xi]? + 20y (w® x) < [[wO|? + 772R2 The last

inequality follows from ||x;|| < R and yl<w( ), x+) <0 (We update only if f(w®) > 1). Then
lw ) < nRVT. (2)
Combining Cauchy-Schwarz inequality, (?7) and (?7), we obtain

* (T+1) T
e
WD [ffw] = Rifw|

(3)

The subgradient algorithm must stop in less than R?||w*||? iterations. We see that n does
not affect the speed of convergence.

e) The algorithm is almost identical to the Batch Perceptron algorithm with two modifi-
cations. First, the Batch Perceptron updates with any example for which y;(w® x;) < 0,
while the current algorithm chooses the example for which y;(w®, x;) is minimal. Second,
the current algorithm employs the parameter n. However, the only difference with the case
n =1 is that it scales w® by 7.

Exercise 3

a) Assume that A has the singular value decomposition UAVT. Plugging this into the
expression I — aAT A we see that I — AT A has the singular value decomposition VA'VT,
where A’ is of dimension n x n and has the singular values 1 — ao?. For the given choice of

(A) — 1 _ mm(A)

« all these singular values are non-negative and the largest is 1 — ao? A

b) We get

min

Vf(x)=AT(Ax —b) = ATA(x — x*),

where we used the fact that A has full column rank so that Ax* = b. Hence GD can be

rewritten as
x't = x! — aATA(x" — x*). (4)

c¢) Subtracting x* from both sides of (?7?) gives
XM o xt =x' —x* —aATAX - x*) = (I — aATA)(x' — x¥).
By taking norms we obtain

[ = x> < Omax(I — aAT A)[|x" — x5

= (1 = aomin(A))|Ix" = x7|2.



