

Overview

- Definitions
 - photosynthesis
 - biomass compositions and structure
- <u>Potential</u> : theoretical vs. real
- <u>Conversion</u>
 - 1. Solids

(wood; energy crops)

- combustion
- pyrolysis
- gasification
- solids-derived liquid/gaseous fuels (='secondary' biofuels)
- 2. Liquids

(bioethanol; biodiesel)

- fermentation
- extraction
- application as 'primary' biofuels (engines)
- **3. Gas** (biogases)
 - anaerobic digestion
 - biocatalytic methanation

Learning objectives

- Know and distinguish the various types of biomasses (as well as the appropriate conversion route per biomass type)
- Know (theoretical) biomass potential (photosynthesis efficiency) and the estimates of <u>real</u> biomass potential
- Quantify the 'energy vs. food' competition for biomass resource
- Explain advantages (& drawbacks) of biomass as energy carrier; in particular for residual biomass
- Know ~ the chemical structure of biomass (ligno-cellulose)
- Estimate the LHV of a biomass from its composition

Theoretical photonic (solar) capture potential

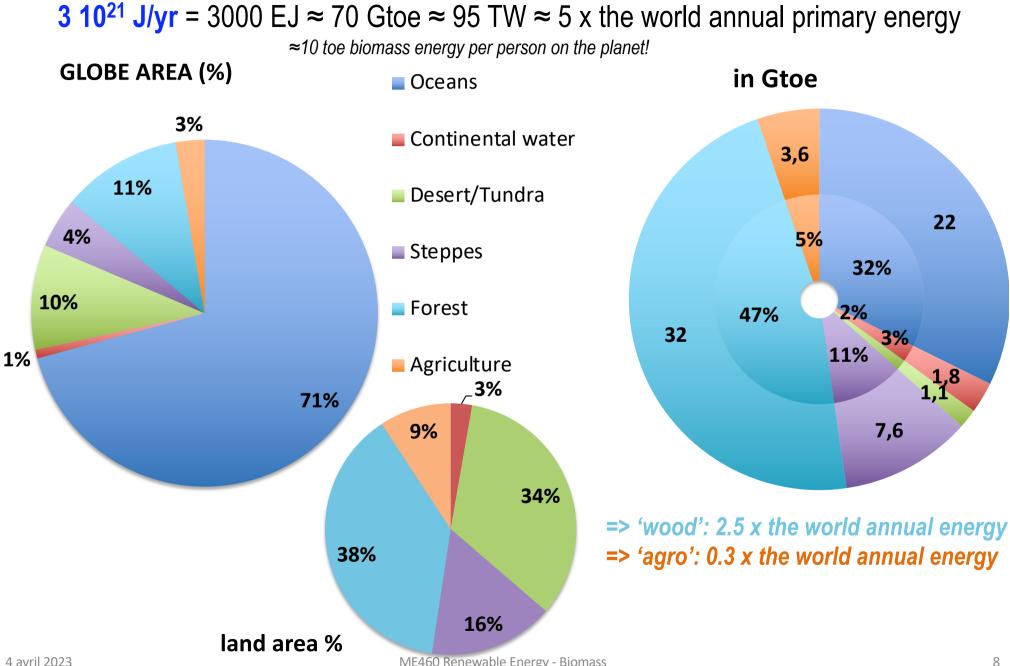
PHOTOSYNTHESIS $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{photons} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 \text{ (glucose)} + 6 \text{ O}_2$

Extraterrestrial radiation arriving at the Earth's <u>outer</u> atmosphere: **5.5 E+24 J/yr** (=1368 W/m², solar constant)

Solar radiation on Earth's surface (where vegetation can capture it) averages out on a yearly basis to 5.1 E+23 J/yr (which is ~160 W/m² or 5 GJ/m².yr \approx 1400 kWh/m².yr)

Compared to the world annual primary energy: **5.6 E+20 J/yr** (= 560 EJ = 13 Gtoe)

 \rightarrow theoretical biomass potential \approx **1000 times** the human primary energy need


Theoretical photosynthesis efficiency

Real biomass photosynthetic 'efficiency'

Process / Maximal solar input on ground level: 1400 kWh/m ² .yr or 160 W/m ² =	100%			
Solar radiation energy \rightarrow photosynthetic active part, PAR (400-700 nm)				
Maximum capture by leafs (canopy) = 80% (effective square meters available)				
Maximum photonic energy capture efficiency into glucose = 28.6% (p. 5)				
$\frac{1}{3}$ on average of the glucose energy is used for the plant metabolism (respiration)				
Max. practical efficiency of 'C-4' 'energy' plants (corn, sorghum, sugar cane), on daily basis (24h)				
Max. practical efficiency of 'C-3' common plants (=95% of biomass, e.g. wheats, rice, trees,), on daily basis (24h)	3%			
\rightarrow from the available 5.1 E+23 J/yr radiation (1400 kWh/m ² .yr), thus 3% is theoretically captured by common biomass (42 kWh/m ² .yr = 150 MJ/m ² .yr)	1.5 E+22 J/yr (4.8 W/m ²)			
Climate factors, shading, and biomass density per m ² drop this capture efficiency by another factor ~5 (\rightarrow 1 W/m ² = 30 MJ/m ² .yr ≈ 2 kg wood/m ² .yr = 1 L gasoline/m ² .yr)	0.6% 3 E+21 J/yr			
1 W/m ² is a poor storage density ! (20 tonnes (dry) / hectare.yr)	p.8			

Even for a '2 kW-society', every citizen would need his personal 2000 m² 'storage' surface

Biomass production of the biosphere

ME460 Renewable Energy - Biomass

Sustainable biomass potential

- Primary production of biomass in the biosphere (3*10²¹ J)
 ≈ 200*10⁹ tonnes (dry) /yr (assuming 15 MJ per kg dry biomass)
- Theoretically exploitable : 57% (without oceans, desert,..)
- Technically sustainable* : ca. 9%
 - = agriculture (5%) + ~10% of forestry (47%), cf. previous slide (\approx 4% of the Earth's total surface, or \approx 13% of the emerged lands)
 - = 18*10⁹ tonnes (dry) / yr
 - = 270*10¹⁸J = 270 EJ (6.4 Gtoe)
 - = 50% of world annual primary energy (550 EJ)
 - (>half of which (150 EJ, 3.6 Gtoe) is used/meant for food, mainly)
 Influence factors:
 An important part can be recovered as energy from the residues

nutrition, moisture, CO₂ concentration, light, temperature, leaf anatomy,...

→ in practical terms, the sustainable biomass energy potential could amount up to $\approx \frac{1}{3}$ (180 EJ) of the present human energy needs. The main source is wood (>120 EJ) and the remainder from other biomass sources, an interesting source being <u>residual</u> biomass (i.e. 'waste streams' – cf. further below)

2 kW per person = 17 MWh/yr = 10 m^3 of wood blocks \approx 20 trees

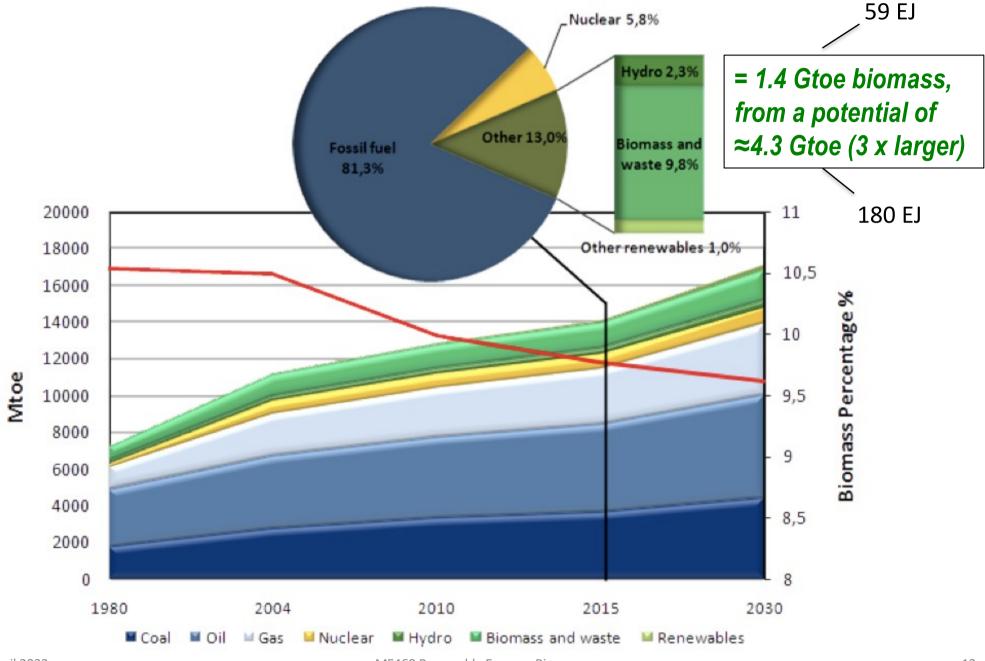
Biomass is <u>dilute</u> energy storage, and approximates the formula "CH₂O". Fossil fuel = concentrated biomass over millions of years, losing oxygen and producing "CH₄" (natural gas), "CH₂" (oil) and "CH" (coal).

Examples of <u>real</u> biomass yield

(in case of 0.6% efficiency = 30 MJ/m^2 .yr = 300 GJ/ha.yr; 1 ha = 1 hectare = $10'000 \text{ m}^2$)

Plant	Energy output (GJ/ha/year)		
1. Switchgrass	185215		
2. Miscanthus	Up to 785 (calc. with LHV=17,8 MJ/kg)		
3. Sugar beet	6296		<u>real</u> yield ≈
J. Ougar beet	0290		typically even
4. Rape seed	1478		only 10-30%
5. Sweet sorghum	5458	ŀ	of the basic
6. Wheat	2347		photosynthetic
8. Wood (forest)	100 (calc. on 50% dm with 10 t/ha yield)	J	yield !

Sources:


4) Phyllis database available at http://www.ecn.nl/phyllis/

^{1) 1:} I.C. Madakadze et al.:Light interception, use-efficiency and energy yield of switchgrass (*panicum virgatum* L.) grown in a short season area. Biomass and Bioenergy, vol 15, No. 6, pp. 475-482, 1998

^{2) 2:} I. Lewandowski et al.: Miscanthus: European experience with a novel energy crop, Biomass and Bioenergy 19 (2000) 209-227

^{3) 3-6:} P. Venuri, G. Venuri: Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy 25 (2003) 235-255

Biomass exploitation reality (~11% of world energy)

ME460 Renewable Energy - Biomass

Is there competition with food? (cf. exercise)

- An adult human being is a 120 W machine. Assume we get our energy from 80% vegetables (= '*direct*' biomass) and 20% from meat (= '*indirect*' biomass). (Assume efficiency from primary biomass-to-meat = 10%)
- How much MJ/day, and kWh/yr, do you need in food from primary biomass?
- How much primary biomass does the world consume in this way? (8 billion people)
- Discuss the result in view of the biomass potential for energy, and current agricultural production.

Motivation for biomass use as energy resource

- the primary yearly biomass production (3000EJ) is still >5-fold the total world human primary energy consumption (560 EJ)
- agricultural land is <10% of the total land area;
 agricultural production = 5% of the biosphere energy production (152 EJ); this is enough to feed the planet, leaving <u>residual</u> energy
- optimised cultivation can raise the effective photosynthetic efficiency above the average value of 0.6% (=30 MJ/m².yr); the theoretical limit is 3% to 5% storage efficiency for C3 and C4 plants (i.e. a maximal potential up to 100-250 MJ/m².yr)
- marginal land areas can be used for 'energy crops/cultures'
- technologies for production and conversion are relatively well established or developed
- **CO₂ neutral**, and less overall polluting emissions (vs. fossil)

Biomass use for energy

Advantages

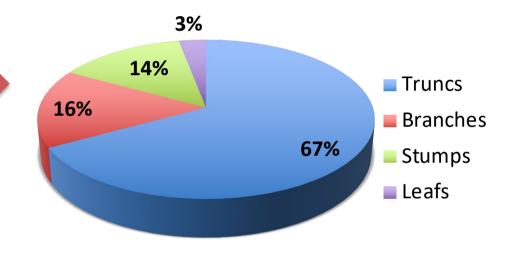
- renewable
- ≈100% use of collected matter
- rel. conventional technologies
- environmentally ~benign
- employment, labour-intensive
- fuel import savings
- energy supply security

Drawbacks

- dispersed resource
- seasonal production
- low energy density
- requires transport and storage means
- some of the transformations involved are cumbersome (mechanical and chemical treatments,...)

Biomass classification by water content

- 'dry' < 15 wt% humidity
- 'humid' 15-30 wt% H₂O
- '**slurry**' 30-90 wt% H₂O (without 'structure')
 - e.g. animal manure
 - e.g. 'molasse' (=the sirupy byproduct from sugar plants)
- 'liquid' > 90 wt% H_2O
 - waste waters
 - sewage
 - industrial effluents with 'high' organic charge (e.g. food industry)


Biomass classification by human activity

- natural biomass (=protected areas, no human interference)
- residual biomass (=organic <u>waste streams</u> from human activity)
 - →passive use of biomass (recoverable as energy resource)
 - agricultural residues
 - forestry maintenance
 - animal breeding / farming
 - industry (industrial solid and liquid wastes, e.g. food industry)
 - urban centers (municipal solid waste; sewage)
- cultivated biomass \rightarrow active use of the land for energy
 - agricultural excess (e.g. non-edible parts of the harvest)
 - 'energy crops' (non-food)

Residual biomasses (='waste streams' from human activity)

Agriculture residues

- cereal crops
- fruit trees, vineyards, olive trees (lignic)
- industrial crops (oily plants)
- Forestry
 - trimming residues
 - wood industry
 - sawdust, bark, shavings
 - forestry maintenance (1-2 kg/m²)
- Animal breeding
 - manure
 - slaughterhouses
- Industry (solids, liquids: effluents with organic charge)
- Public waste (municipal solid waste MSW; sewage WWTP) (estimate for liq. wastes = 150-300 L/day/person containing 0.4 kg organic dry solids)

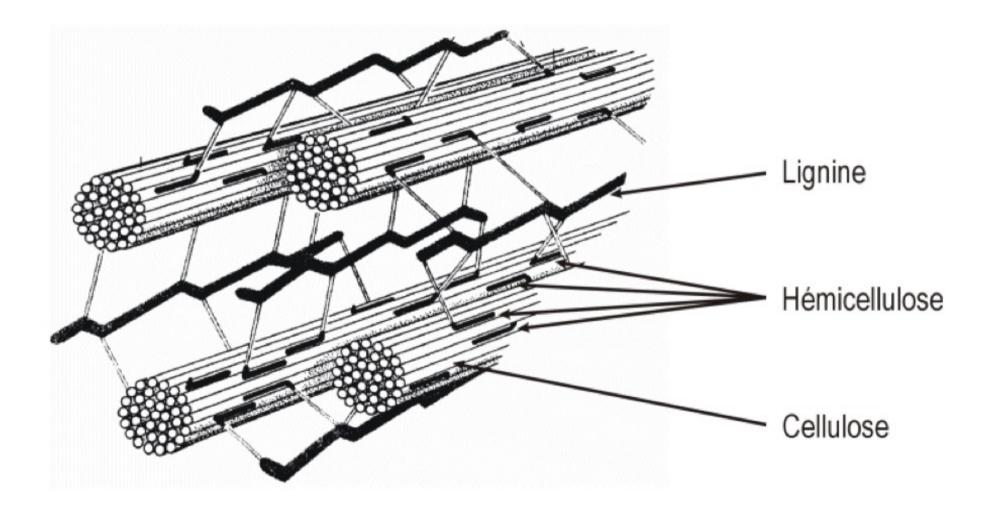
Estimate of *residual* biomass, primary and final energy = energy recovered from waste streams (cf. exercise)

Assumptions / Conversion factors:

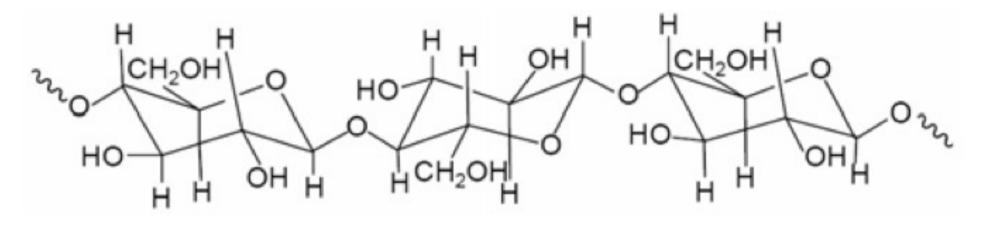
- 1. agriculture residues: from total production (152 EJ), discount human food requirement (cf. exercise p.13). Assume that from the remainder, $\approx \frac{1}{2}$ is used to feed animals, $\approx \frac{1}{4}$ is used for composting, and the rest (assume 10%) is recoverable as energy
- 2. forestry: assume 2 kg/m² per year of dry wood (LHV:17 MJ/kg); assume 2% of the world's forests area is trimmed (from where this 'waste wood' is recovered)
- **3.** animal manure: assume a production of 1 m³ of biogas per day (with 50% CH₄ content) per large farm animal (cow-equivalent) and there are half as many 'cow-equivalents' as people (LSU : livestock unit).
- 4. <u>solid</u> organic **wastes** from our activities (kitchen waste, park&garden waste, food industry): assume 1 kg dry organic matter waste per week per person, converted to 500 L biogas per kg dry waste, with a CH₄ content of 60%
- 5. human <u>liquid</u> organic **waste** (sewage): assume a production of 30 L biogas per day per person, with a CH_4 content of 65%
- 6. Finally, you need to assume realistic conversion efficiencies from primary to final energy (whether heat or power) for the different sources!

Residual biomass: advantages

- **low cost** production (can even be zero or <u>negative</u> cost 'fuel')
- closed cycle: minerals (inorganic part) are reused for **fertilising**
- **local** exploitation (= low transport cost)
- reduced contamination or load on waste management
- 'free' energy recovery, which amounts to at least several % (and up to 10%) of total energy needs !


'Residual' biomass energy: Swiss case

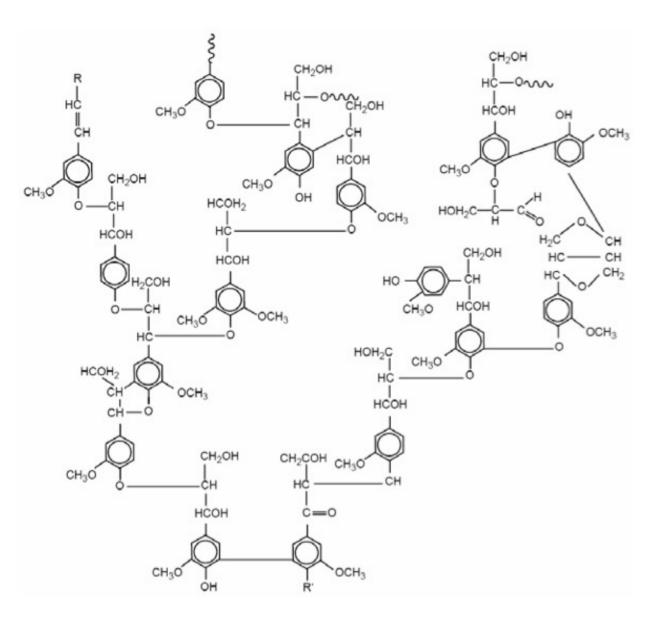
 56 PJ incinerated solid wastes (MSW/ISW, waste wood; in part NGassisted)


(Remark: only ≈50% of this is in fact renewable (rest = fossil origin, mainly <u>plastics</u>))

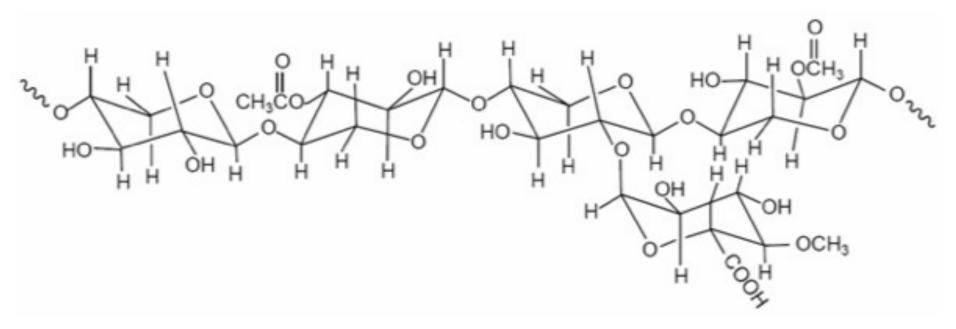
- 40 PJ indigenous wood use (=> potential could easily be doubled)
- 5 PJ of biogas (largely *under*exploited)
 => could be increased >5-fold (≈30 PJ)
- = present total of 100 PJ = 8% of Swiss primary energy
 - ~6.5% of final energy; **5% of Swiss electricity** (as renewable: **3%**)
 - electricity 10.2 PJ (20% efficiency) from incinerated solid wastes (2.85 TWh); in addition 30% heat is produced and distributed as district heat
 - electricity 1.2 PJ (27% efficiency) from biogases (0.3 TWh) => 0.5% of total electricity
 - electricity production from wood is ~negligible

Ligno-cellulosic biomass structure

Cellulose

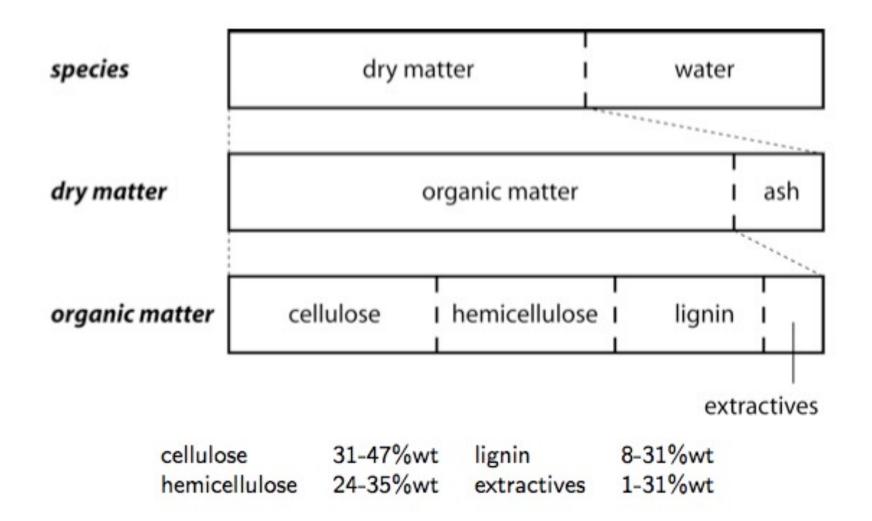


- 40-80 wt% in plants, **17.5 MJ/kg** (C:H:O ≈ 30:45:25 at%)
- '*soft*' part in plants
- <u>linear</u> polymer of up to 10'000 glucose (C6) molecules: $(C_6H_{10}O_5)_n$

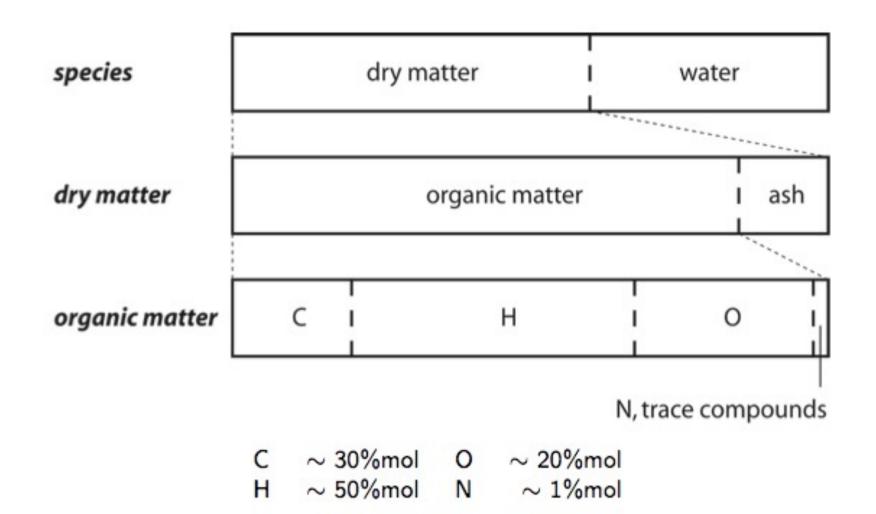

Lignine

- complex aromatic polymer
- ca. (C₁₀H₁₂O₄)_n
- 25-35 wt% in wood
- 10-25% in plants
- responsible for slow
 growth and rigidity
- 26.6 MJ/kg

(C:H:O ≈ 40:45:15 at%)

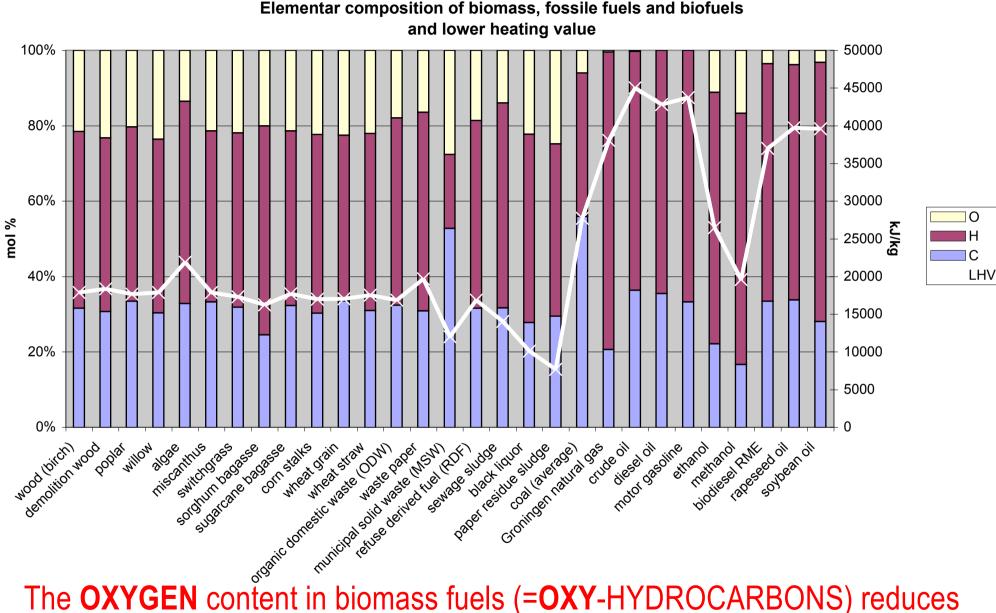

Hemi-cellulose (xylose)

- 15-30wt% of plants, C₅H₈O₄, 17.5 MJ/kg (C:H:O ≈ 30:45:25 at%)
- *'connects'* lignine to cellulose
- 'shorter' polymer of 50-200 sugar molecules (C5 structures)
- 5 sugars: xylose, arabinose, galactose, glucose, mannose

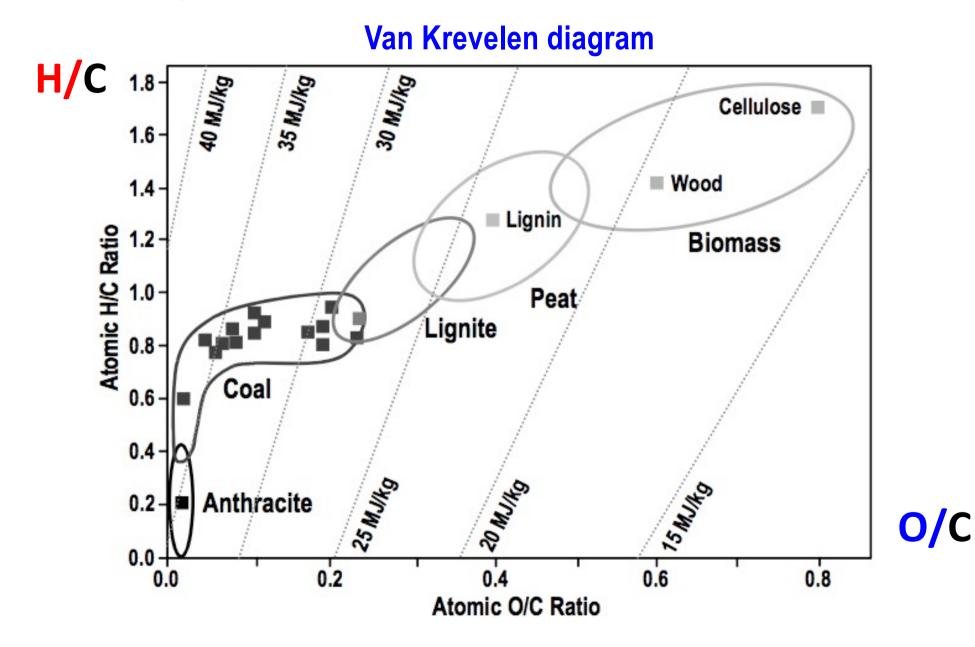

Structural composition

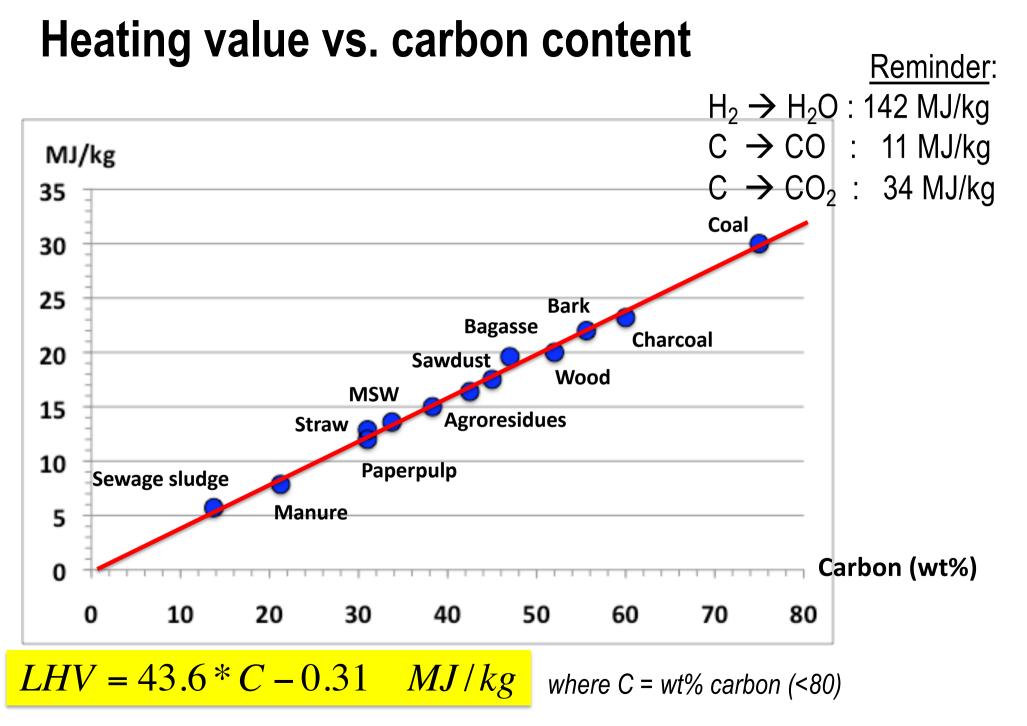
macromolecular description:

Chemical composition


atomic description:

'Dry' wood (=> still 11% humidity)

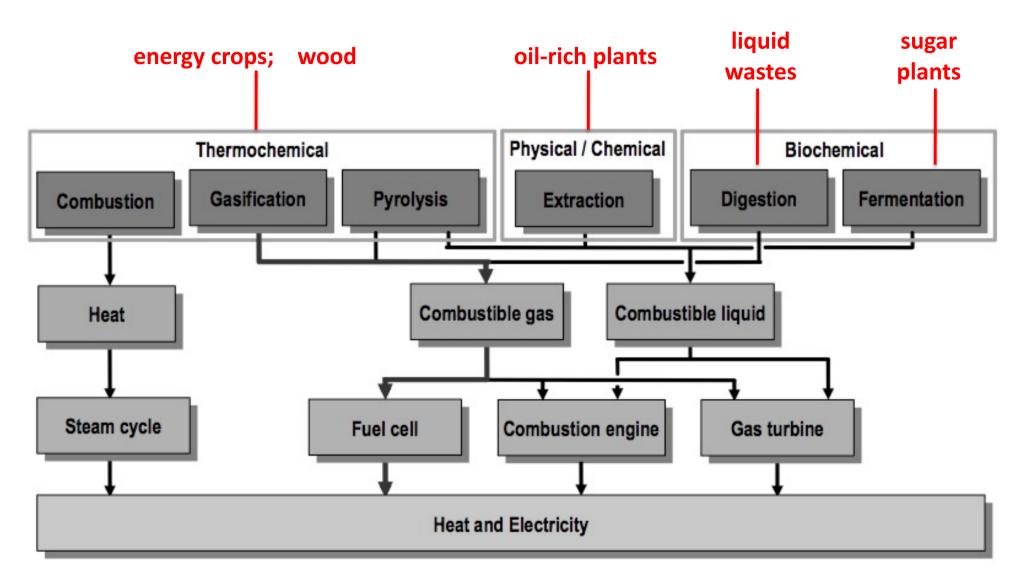

Element	Weight %
C	47
Н	6
0	35
Ν	0.1
S	0.0
Ash	1
Water	11


Composition and energy content of fuels

The **OXYGEN** content in biomass fuels (=**OXY**-HYDROCARBONS) reduces the LHV to **<20 MJ/kg** compared to >40 MJ/kg for (fossil) HYDROCARBONS

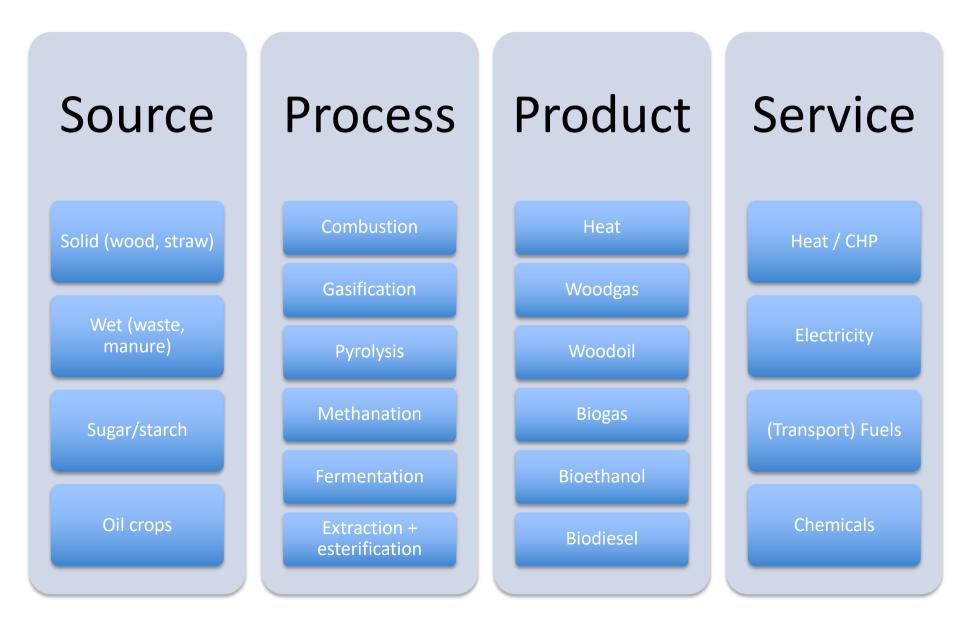
Heating value and C/H/O composition

Compositions of biomasses


Source	С	н	Ο	Ν	S	Inorg.	LHV MJ/kg
carbon	100						29.3
coal	70-80	5	5-20	1-1.5	1-3	4-15	30-34
wood	52	6	40	0.1	0	1	21
bagasse	47	6	35	0	0	11	21
untreated sewage	45.5	7	26	2.4	0.5	19	16.4
cattle manure	42.7	5.5	31	2.4	0.3	18	17
rice residue	39	5.4	38	0.5	0	18	15
MSW	34	4.6	22	0.7	0.4	38	13
paperpulp	31	7	51	0.5	0.2	10	12
sewage sludge	14	2	11	1	0.7	71	5

LHV = 43.6 * C - 0.31 MJ/kg

where C = wt% carbon (<80)


The carbon content alone is a reasonable measure for the heating value. As if the LHV (expressed per kg fuel) gain due to H were 'lost' due to the presence of O mass in the fuel.

Biomass conversion schemes overview

F. Nagel (PSI)

BIOMASS CONVERSION ROADMAP

