Série 28

Exercice 1. Dans le cours les vecteurs ont été définis dans \mathbb{R}^n , mais nous les avons représentés dans \mathbb{R}^2 ou \mathbb{R}^3 (c'est-à-dire pour n=2 ou n=3). Comment se réalisent les vecteurs dans \mathbb{R} (c'est-à-dire pour n=1)? Définis cette notion et explique comment on caractérise un vecteur sur la droite réelle \mathbb{R} .

Exercice 2. On considère dans le plan \mathbb{R}^2 l'origine O=(0;0) et les points A=(1;1) et B=(2;1).

- a) Reporte sur du papier quadrillé les vecteurs \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{BA} .
- b) Construis ensuite les vecteurs $2 \cdot \overrightarrow{OA} 4 \cdot \overrightarrow{OB}$ et $2 \cdot \overrightarrow{OA} 4 \cdot \overrightarrow{BA}$, puis la somme de ces deux vecteurs.
- c) Indique en notation colonne les composantes des vecteurs \overrightarrow{OA} et \overrightarrow{OB} , puis calcule les autres vecteurs que tu as construits ci-dessus.

Exercice 3. Donne des exemples de :

- a) flèches différentes qui représentent le même vecteur;
- b) flèches qui représentent des vecteurs différents de même direction et de même longueur;
- c) des vecteurs de même longueur mais de directions différentes;
- d) vecteurs différents de même direction et de même sens.

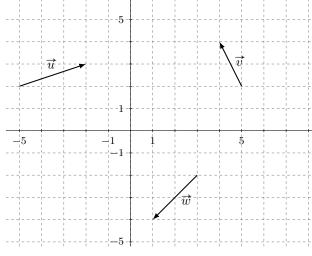
Exercice 4. En utilisant la relation de Chasles, démontre que la somme de vecteurs est commutative : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Exercice 5. Vrai ou faux? Justifie tes réponses!

- a) Deux vecteurs sont linéairement dépendants si et seulement si chacun d'eux est un multiple de l'autre.
- b) Trois vecteurs sont linéairement dépendants si et seulement si deux d'entre eux sont colinéaires.
- c) Les vecteurs \vec{u} , \vec{v} et \vec{w} sont linéairement dépendants si l'un d'entre eux est nul.
- d) Trois vecteurs de V_3 sont linéairement dépendants si et seulement si l'un d'entre eux se trouve dans un même plan que les deux autres.
- e) Il existe deux vecteurs linéairement indépendants dans V_1 .
- f) Il existe trois vecteurs linéairement indépendants dans V_2 .
- g) Il existe trois vecteurs linéairement indépendants dans V_3 .

Exercice 6. Considérons dans V_2 les vecteurs \vec{u} , \vec{v} et \vec{w} :

- a) Construis $\vec{u} + \vec{v} + \vec{w}$.
- b) Calcule cette somme en notation colonne.
- c) Décris toutes les flèches équipollentes à \vec{u} .
- d) Détermine si les vecteurs \vec{u} et \vec{v} sont linéairement indépendants.
- e) Détermine si les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont linéairement indépendants.

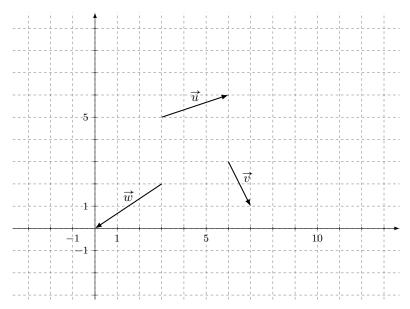


Exercice 7. En utilisant la définition de l'action de \mathbb{R} sur V_2 (et sans utiliser la notation des vecteurs en colonnes), démontre que l'action de \mathbb{R} est distributive par rapport à la somme de vecteurs de V_2 : $\lambda(\vec{u}+\vec{v})=\lambda\vec{u}+\lambda\vec{v}$. Tu pourras t'aider du Théorème de Thalès.

Exercice 8. Reporte dans \mathbb{R}^2 les points A=(4;2), B=(0;8), C=(-6;4) (dessine l'axe Ox allant de -6 à 13, et l'axe Oy allant de -3 à 11 avec une unité valant 5 mm).

Construis le point D tel que $\overrightarrow{CD} = -\overrightarrow{AB}$. Construis ensuite $\overrightarrow{OA} + 1/2 \cdot \overrightarrow{AB}$ et $\overrightarrow{OA} + 1/2 \cdot \overrightarrow{AB} + 1/2 \cdot \overrightarrow{BC}$. Détermine le centre du carré \overrightarrow{ABCD} .

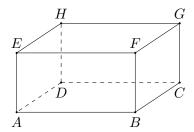
Exercice 9. On considère les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ci-dessous. Construis $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}$, $\overrightarrow{u} - \overrightarrow{w}$ et $2\overrightarrow{u} - \overrightarrow{v} + 2\overrightarrow{w}$; ces trois vecteurs sont-ils linéairement indépendants?



Exercice 10. Barycentre d'un triangle équilatéral. On considère dans \mathbb{R}^3 le triangle dont les sommets sont les points A = (4; 0; 0), B = (0; 4; 0) et C = (0; 0; 4). On appelle O l'origine.

- a) Dessine une esquisse de ce triangle dans l'espace.
- b) Calcule les vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
- c) Calcule le point milieu du segment [AB] obtenu vectoriellement comme $\overrightarrow{OM} = \overrightarrow{OA} + 1/2 \cdot \overrightarrow{AB}$.
- d) Calcule le vecteur \overrightarrow{CM} .
- e) Calcule et construis sur ton esquisse le barycentre G du triangle $\triangle ABC$. On l'obtient vectoriellement comme $\overrightarrow{OG} = \overrightarrow{OC} + 2/3 \cdot \overrightarrow{CM}$. Quelles sont les coordonnées de G?

Exercice 11. On considère dans \mathbb{R}^3 un parallélipipède :



Exprime de la manière la plus simple possible les vecteurs $\overrightarrow{AB} + \overrightarrow{DC}$, $\overrightarrow{AB} + \overrightarrow{CG}$, $\overrightarrow{DC} + \overrightarrow{DH}$ ainsi que $\overrightarrow{AD} + \overrightarrow{BF} + \overrightarrow{HE} + \overrightarrow{GC}$.

Exercice 12. L'hexagone régulier. On considère dans le plan \mathbb{R}^2 les points O=(0,0) et A=(2,0).

- a) Donne l'expression des deux vecteurs \vec{u} et \vec{v} de longueur 2 qui sont supportés par des droites faisant un angle de $\pi/3$ avec l'axe Ox. On choisira \vec{u} de sorte que ses deux composantes soient positives.
- b) Calcule les coordonnées de quatre points B,C,D et E tels que $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{u}$, $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{v}$, $\overrightarrow{OD} = \overrightarrow{OC} \overrightarrow{OA}$ et $\overrightarrow{OE} = \overrightarrow{OD} \overrightarrow{u}$.
- c) Représente sur un dessin l'hexagone régulier OABCDE ainsi obtenu.

Exercice 13. On dit que deux flèches du plan sont équivalentes et on note $\overrightarrow{AB} \simeq \overrightarrow{CD}$ si elles ont même direction et même longueur.

- a) Montre que cela définit une relation d'équivalence sur les flèches.
- **b)** Peut-on définir une somme sur les classes d'équivalence de flèches ainsi obtenues (comme nous l'avons fait pour les classes d'équipollence)?

Exercice 14. Les polynômes comme espace vectoriel. Considérons $\mathbb{R}[x]$, l'anneau des polynômes réels en une variable x.

- a) Pourquoi $\mathbb{R}[x]$ est-il un groupe commutatif pour l'addition de polynômes?
- b) On définit une action de \mathbb{R} sur $\mathbb{R}[x]$ en posant $\lambda \cdot (a_0 + a_1 x + \cdots + a_n x^n) = \lambda a_0 + \lambda a_1 x + \cdots + \lambda a_n x^n$. Pourquoi $\mathbb{R}[x]$ est-il un \mathbb{R} -espace vectoriel? Explique en particulier pourquoi ce produit est distributif par rapport à l'addition.
- c) Montre que les polynômes $1, x, x^2$ sont linéairement indépendants.
- d) Montre que les polynômes 1 x, 1 + x, x sont linéairement dépendants.