Exercice 1. (a) Let $\phi: A \rightarrow B$ be a ring homomorphism and let $a \in A^{\times}$. Then, there exists $b \in A^{\times}$such that $a b=1$. Then:

$$
1=\phi(1)=\phi(a b)=\phi(a) \phi(b) .
$$

Hence $\phi(a)$ is an invertible element of $B$ with inverse $\phi(b)$.
(b) Let $a, b \in A$ such that $a \sim b$. Then there exists $u \in A^{\times}$such that $a=u b$ and we have:

$$
\phi(a)=\phi(u b)=\phi(u) \phi(b) .
$$

Now by point (a) we have that $\phi(u) \in B^{\times}$and we conclude that $\phi(a) \sim \phi(b)$.
(c) Counterexample: Consider the ring homomorphism: $\xi_{2}: \mathbb{Z}[x] \rightarrow \mathbb{F}_{2}[x]$ (Example 1.4.36). Now $x^{2}+4 x+2 \in \mathbb{Z}[x]$ is irreducible (one shows this using Eisenstein with $p=2$ ), but $\xi_{2}\left(x^{2}+4 x+2\right)=x^{2}$ and $x^{2} \in \mathbb{F}_{2}[x]$ is reducible.

Exercice 2. (a) Voir corrigé du bonus 3.
(b) Par le théorème des restes chinois

$$
\mathbb{Z} / p q \mathbb{Z}=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}
$$

Ainsi $(1,0),(0,1),(0,0)$ et $(1,1)$ sont des racines. Comme les polynômes en jeu sont moniques, on peut voir avec le degré que le produit des $\left(t-a_{i}\right)$ ne peut diviser $t^{2}-t$.
(c) As $f \mid g$ in $\mathbb{Q}[t]$, there exists $h \in \mathbb{Q}[t]$ such that $g(t)=f(t) h(t)$. Now, as $h \in \mathbb{Q}[t \mid$, we can write $h(t)=c \cdot h_{1}(t)$, where $h_{1}(t) \in \mathbb{Z}[t]$ is primitive and $c \in \mathbb{Q}$. Then:

$$
g(t)=c \cdot f(t) h_{1}(t) .
$$

By Lemma 3.8.9, we have that $f(t) h_{1}(t)$ is primitive and, since $g(t)$ is also primitive, we use Lemma 3.8.11 to determine that $c \in \mathbb{Z}^{\times}$, i.e. $c= \pm 1$. Then

$$
g(t)= \pm f(t) h_{1}(t) \text { in } \mathbb{Z}[t], \text { therefore } f \mid g \text { in } \mathbb{Z}[t] .
$$

(d) The roots of $x^{4}+1$ over $\mathbb{C}$ are $e^{i\left(\frac{\pi}{4}+\frac{k \pi}{2}\right)}$, where $0 \leq k \leq 3$, and we have:

$$
x^{4}+1=\prod_{k=0}^{3}\left(x-e^{i\left(\frac{\pi}{4}+\frac{k \pi}{2}\right)}\right) .
$$

We group the conjugate complex roots and obtain the decomposition over $\mathbb{R}[x]$

$$
x^{4}+1=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+1\right) .
$$

By Example 3.9.2 (4), it follows $x^{4}+1$ does not admit roots in $\mathbb{Q}$, as it does not admit roots in $\mathbb{R}$. If $x^{4}+1=f(x) g(x)$, where $f(x), g(x) \in \mathbb{Q}[x]$ are polynomials of degree 2 , then $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)$ and $g(x)=\left(x-a_{3}\right)\left(x-a_{4}\right)$, where $a_{1}, a_{2}, a_{3}, a_{4} \in\left\{\left.e^{i\left(\frac{\pi}{4}+\frac{k \pi}{2}\right)} \right\rvert\, 0 \leq k \leq 3\right\}$ are distinct. One checks that for every choice of $a_{i} a_{j}$ the polynomial $\left(x-a_{i}\right)\left(x-a_{j}\right)$ does
not have coefficients in $\mathbb{Q}$. We conclude that $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$. Lastly, we note that, as it is primitive., by Lemma 3.8.13, it is also irreducible in $\mathbb{Z}[x]$.
In $\mathbb{F}_{2}[x]$ we have $x^{4}+[1]_{2}=\left(x+[1]_{2}\right)^{4}$.
The squares in $\mathbb{F}_{11}$ are $[0]_{11},[1]_{11},[3]_{11},[4]_{11},[5]_{11}$ and $[9]_{11}$ and we deduce that $x^{4}+[1]_{11}$ does not admit roots in $\mathbb{F}_{11}$. Assume that $x^{4}+[1]_{11}$ admits a decomposition into a product of two polynomials of degree 2. As $\mathbb{F}_{11}$ is a field, we can assume that these polynomials are unitary. We have:

$$
x^{4}+[1]_{11}=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(b+a c+d) x^{2}+(b c+a d) x+b d
$$

and so $d=b^{-1}$ and $c=-a$. We substitute and obtain:

$$
x^{4}+[1]_{11}=x^{4}+\left(b-a^{2}+b^{-1}\right) x^{2}+a\left(b^{-1}-b\right) x+[1]_{11}
$$

and so $a\left(b^{-1}-b\right)=0$.

- if $a=0$, then $b-a^{2}+b^{-1}=b+b^{-1}=0$, which is impossible as $[-1]_{11}$ is not a square in $\mathbb{F}_{11}$.
- if $b=b^{-1}$, then $b^{2}=[1]_{11}$ and so $b \in\left\{[1]_{11},[10]_{11}\right\}$.
- If $b=[1]_{11}$, then $b-a^{2}+b^{-1}=[2]_{11}-a^{2}=0$, which is impossible as $[2]_{11}$ is not a square in $\mathbb{F}_{11}$.
- If $b=[10]_{11}$, then $b-a^{2}+b^{-1}=[9]_{11}-a^{2}=0$ and so $a \in\left\{[3]_{11},[8]_{11}\right\}$.

We conclude that

$$
x^{4}+[1]_{11}=\left(x^{2}+[3]_{11} \cdot x+[10]_{11}\right)\left(x^{2}+[8]_{11} \cdot x+[10]_{11}\right) \text { in } \mathbb{F}_{11}[x] .
$$

Since $x^{8}-1=\left(x^{4}+1\right)\left(x^{4}-1\right)$ it suffices to factor $x^{4}-1$ :

- in $\mathbb{C}[x]$ we have: $x^{4}-1=(x+i)(x-i)(x+1)(x-1)$.
- in $\mathbb{R}[x], \mathbb{Q}[x]$ and $\mathbb{Z}[x]$ we have: $x^{4}-1=\left(x^{2}+1\right)(x+1)(x-1)$.
- in $\mathbb{F}_{2}[x]$ we have: $x^{4}-[1]_{2}=x^{4}+[1]_{2}=\left(x+[1]_{2}\right)^{4}$.
- in $\mathbb{F}_{11}[x]$ we have: $x^{4}-[1]_{11}=\left(x^{2}+[1]_{11}\right)\left(x+[1]_{11}\right)\left(x+[10]_{11}\right)$, where we have seen earlier that $x^{2}+[1]_{11}$ is irreducible.

Exercice 3. (a) We write $\frac{2}{9} x^{5}+\frac{5}{3} x^{4}+x^{3}+\frac{1}{3}=\frac{1}{9}\left(2 x^{5}+15 x^{4}+9 x^{3}+3\right) \in \mathbb{Q}[x]$.
Now $\frac{1}{9} \in \mathbb{Q}[x]^{\times}$, as $\frac{1}{9} \in \mathbb{Q}^{\times}$. Therefore $\frac{2}{9} x^{5}+\frac{5}{3} x^{4}+x^{3}+\frac{1}{3}$ is irreducible in $\mathbb{Q}[x]$ if and only if $2 x^{5}+15 x^{4}+9 x^{3}+3$ is. As $\operatorname{gcd}(2,15,9,3)=1$, we have that $2 x^{5}+15 x^{4}+9 x^{3}+3$ is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Using Eisenstein for $p=3$, where $3 \in \mathbb{Z}$ is irreducible, we deduce that $2 x^{5}+15 x^{4}+9 x^{3}+3$ is irreducible in $\mathbb{Z}[x]$.
(b) Let $f(x)=x^{4}+[2]_{5} \in \mathbb{F}_{5}[x]$. Note that for all $a \in \mathbb{F}_{5}$ we have $a^{2} \in\left\{[0]_{5},[1]_{5},[4]_{5}\right\}$. Therefore $f$ does not admit roots in $\mathbb{F}_{5}$. We will now show that $f$ is not a product of two polynomials of degree 2 . As $\mathbb{F}_{5}$ is a field, we can assume that these polynomials are unitary and so assume there exist $a, b, c, d \in \mathbb{F}_{5}$ such that
$f(x)=x^{4}+[2]_{5}=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(b+a c+d) x^{2}+(b c+a d) x+b d$.
Then $c=-a$ and $d=[2]_{5} b^{-1}$ and substituting in the above gives:

$$
x^{4}+[2]_{5}=x^{4}+\left(b-a^{2}+[2]_{5} \cdot b^{-1}\right) x^{2}+\left(-a b+[2]_{5} \cdot a b^{-1}\right) x+[2]_{5} .
$$

Thus $-a b+[2]_{5} \cdot a b^{-1}=a\left(-b+[2]_{5} \cdot b^{-1}\right)=0$ and

- if $a=0$, then $b^{2}=-[2]_{5}$, a contradiction.
- if $-b+[2]_{5} b^{-1}=0$, then $b^{2}=[2]_{5}$, a contradiction.

We conclude that $f$ is irreducible in $\mathbb{F}_{5}[x]$.
Lastly, let $x^{4}+15 x^{3}+7 \in \mathbb{Q}[x]$. As the dominant coefficient is 1 , this polynomial is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Let $\phi_{5}: \mathbb{Z} \rightarrow \mathbb{F}_{5}$ be the quotient homomorphism and let $\pi_{5}: \mathbb{Z}[x] \rightarrow \mathbb{F}_{5}[x]$ be its induced homomorphism. We have that:

$$
\pi_{5}\left(x^{4}+15 x^{3}+7\right)=x^{4}+[2]_{5}
$$

and, as $x^{4}+[2]_{5}$ is irreducible in $\mathbb{F}_{5}[x]$, we use Proposition 3.9.1 to conclude that $x^{4}+15 x^{3}+7$ is irreducible in $\mathbb{Z}[x]$.
(c) First we note that $x^{2}+y^{2}+1 \in \mathbb{R}[x, y]$ is primitive as its dominant coefficient is 1 . Secondly, $y^{2}+1 \in \mathbb{R}[y]$ is irreducible. We now apply Eisenstein with $p=y^{2}+1$ to conclude that $x^{2}+y^{2}+1$ is irreducible in $\mathbb{R}[x, y]$.
(d) We have $x^{2}+y^{2}+[1]_{2}=\left(x+y+[1]_{2}\right)^{2}$ in $\mathbb{F}_{2}[x, y]$.
(e) The evaluation homomorphism $\mathrm{ev}_{0}: \mathbb{Q}[y] \rightarrow \mathbb{Q}, \mathrm{ev}_{0}(y)=0$, induces the homomorphism $\xi: \mathbb{Q}[y][x] \rightarrow \mathbb{Q}[x]$ with $\xi(y)=0$ and $\xi(x)=x$. We have that:

$$
\xi\left(y^{4}+x^{3}+x^{2} y^{2}+x y+2 x^{2}-x+1\right)=x^{3}+2 x^{2}-x+1
$$

and, by Proposition 3.9.1, $y^{4}+x^{3}+x^{2} y^{2}+x y+2 x^{2}-x+1$ is irreducible in $\mathbb{Q}[x, y]$ if $x^{3}+2 x^{2}-x+1$ is irreducible in $\mathbb{Q}[x]$. Now $\operatorname{deg}\left(x^{3}+2 x^{2}-x+1\right)=3$ and thus $x^{3}+2 x^{2}-x+1$ is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in $\mathbb{Q}$. Assume $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}$ and $\operatorname{gcd}(p, r)=1$, is a root of $x^{3}+2 x^{2}-x+1$. Then

$$
\left(\frac{p}{r}\right)^{3}+2\left(\frac{p}{r}\right)^{2}-\left(\frac{p}{r}\right)+1=0
$$

As $\operatorname{gcd}(p, r)=1$, it follows that $p|1, r| 1$ and so $\frac{p}{r} \in\{-1,1\}$. One checks that neither -1 , nor 1 is a root of $x^{3}+2 x^{2}-x+1$ and thus $x^{3}+2 x^{2}-x+1$ is irreducible in $\mathbb{Q}[x]$.
(f) We have $4 x^{3}+120 x^{2}+8 x-12=4\left(x^{3}+30 x^{2}+2 x-3\right) \in \mathbb{Q}[x]$. Now $4 \in \mathbb{Q}[x]^{\times}$and so $4 x^{3}+120 x^{2}+8 x-12$ is irreducible in $\mathbb{Q}[x]$ if and only if $x^{3}+30 x^{2}+2 x-3$ is. As $\operatorname{deg}\left(x^{3}+30 x^{2}+2 x-3\right)=3$ it follows that $x^{3}+30 x^{2}+2 x-3$ is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in $\mathbb{Q}$. Assume there exist $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}$ and $\operatorname{gcd}(p, r)=1$, such that:

$$
\left(\frac{p}{r}\right)^{3}+30\left(\frac{p}{r}\right)^{2}+2\left(\frac{p}{r}\right)-3=0 .
$$

As $\operatorname{gcd}(p, r)=1$, it follows that $p \mid 3$ and $r \mid 1$. Therefore $\frac{p}{r} \in\{-3,-1,1,3\}$. One checks that none of the elements in $\{-3,-1,1,3\}$ is a root of $x^{3}+30 x^{2}+2 x-3$. We conclude that $x^{3}+30 x^{2}+2 x-3$ is irreducible in $\mathbb{Q}[x]$.
(g) As the polynomial $t^{6}+t^{3}+1$ is primitive, it follows that it is irreducible in $\mathbb{Q}[t]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). We consider the quotient homomorphism $\phi_{2}: \mathbb{Z} \rightarrow \mathbb{F}_{2}$ and its induced homomorphism $\pi_{2}: \mathbb{Z}[t] \rightarrow \mathbb{F}_{2}[t]$ under which

$$
\pi_{2}\left(t^{6}+t^{3}+1\right)=t^{6}+t^{3}+[1]_{2}
$$

By Proposition 3.9.1, $t^{6}+t^{3}+1$ is irreducible in $\mathbb{Z}[t]$ if $t^{6}+t^{3}+[1]_{2}$ is irreducible in $\mathbb{F}_{2}[t]$.
Now, one checks that $t^{6}+t^{3}+[1]_{2}$ does not admit roots in $\mathbb{F}_{2}[t]$. Secondly, the only irreducible polynomial of degree 2 in $\mathbb{F}_{2}[t]$ is $t^{2}+t+[1]_{2}$ and one checks that this does not divide
$t^{6}+t^{3}+[1]_{2}$. Lastly, we assume that $t^{6}+t^{3}+[1]_{2}$ is a product of two polynomials of degree 3. As $\mathbb{F}_{2}$ is a field, we can assume that these polynomials are unitary and we have:

$$
\begin{aligned}
t^{6}+t^{3}+[1]_{2}= & \left(t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)\left(t^{3}+b_{2} t^{2}+b_{1} t+b_{0}\right) \\
= & t^{6}+\left(a_{2}+b_{2}\right) t^{5}+\left(a_{1}+a_{2} b_{2}+b_{1}\right) t^{4}+\left(a_{0}+a_{1} b_{2}+a_{2} b_{1}+b_{0}\right) t^{3}+ \\
& +\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) t^{2}+\left(a_{0} b_{1}+a_{1} b_{0}\right) t+a_{0} b_{0}
\end{aligned}
$$

Then $a_{0}=b_{0}=[1]_{2}, a_{2}=b_{2}$ and

$$
\left\{\begin{array} { l } 
{ a _ { 0 } b _ { 1 } + a _ { 1 } b _ { 0 } = [ 0 ] _ { 2 } } \\
{ a _ { 0 } b _ { 2 } + a _ { 1 } b _ { 1 } + a _ { 2 } b _ { 0 } = [ 0 ] _ { 2 } } \\
{ a _ { 0 } + a _ { 1 } b _ { 2 } + a _ { 2 } b _ { 1 } + b _ { 0 } = [ 1 ] _ { 2 } } \\
{ a _ { 1 } + a _ { 2 } b _ { 2 } + b _ { 1 } = [ 0 ] _ { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
b_{1}+a_{1}=[0]_{2} \\
a_{1} b_{1}=[0]_{2} \\
b_{2}\left(a_{1}+b_{1}\right)=[1]_{2} \\
a_{2} b_{2}=[0]_{2}
\end{array} \rightarrow[1]_{2}=[0]_{2}\right.\right.
$$

We conclude that $t^{6}+t^{3}+[1]_{2}$ is irreducible in $\mathbb{F}_{2}[t]$.
(h) We first note that the ring $\mathbb{Q}[x]$ is factorial, as $\mathbb{Q}$ is (Theorem 3.8.1), and that $x \in \mathbb{Q}[x]$ is irreducible. Secondly the polynomial $y^{4}+x y^{3}+x y^{2}+x^{2} y+3 x^{2}-2 x \in \mathbb{Q}[x, y]$ is primitive, as its dominant coefficient is 1 . We now apply Eisenstein with $p=x$ to conclude that $y^{4}+x y^{3}+x y^{2}+x^{2} y+3 x^{2}-2 x$ is irreducible in $\mathbb{Q}[x, y]$.

## Exercice 4.

Let $f(t)=t^{4}+4 t^{3}+3 t^{2}+7 t-4 \in \mathbb{Z}[t]$.
(a) We have $\pi_{2}(f(t))=t^{4}+t^{2}+t=t\left(t^{3}+t+[1]_{2}\right) \in \mathbb{F}_{2}[t]$. Moreover, we remark that $t^{3}+t+[1]_{2}$ is irreducible in $\mathbb{F}_{2}[t]$, as it does not admit roots in $\mathbb{F}_{2}$.
(b) We have $\pi_{3}(f(t))=t^{4}+t^{3}+t-[1]_{3}=\left(t^{2}+[1]_{3}\right)\left(t^{2}+t-[1]_{3}\right) \in \mathbb{F}_{3}[t]$.
(c) Assume that $f(t)$ is reducible in $\mathbb{Z}[t]$. Then either $f(t)=(t-a) g(t)$, where $a \in \mathbb{Z}$ and $g(t) \in \mathbb{Z}[t]$ is a polynomial of degree 3 , or $f(t)=f_{1}(t) f_{2}(t)$, where $f_{1}(t), f_{2}(t) \in \mathbb{Z}[t]$ are two polynomials of degree 2 .

In the first case, $a \mid 4$ but none of the elements of $\{ \pm 1, \pm 2, \pm 4\}$ are roots of $f$. Hence, we only need to consider the case when $f(t)=f_{1}(t) f_{2}(t)$, where $\operatorname{deg}\left(f_{1}(t)\right)=\operatorname{deg}\left(f_{2}(t)\right)=2$, and we have:

$$
\pi_{2}(f(t))=\pi_{2}\left(f_{1}(t) f_{2}(t)\right)=\pi_{2}\left(f_{1}(t)\right) \pi_{2}\left(f_{2}(t)\right.
$$

Now, as $\operatorname{deg}\left(\pi_{2}(f(t))\right)=4$ and as $\operatorname{deg}\left(\pi_{2}\left(f_{1}(t)\right)\right)=\operatorname{deg}\left(\pi_{2}\left(f_{2}(t)\right)\right) \leq 2$, it follows that $\operatorname{deg}\left(\pi_{2}\left(f_{1}(t)\right)\right)=2$ and $\operatorname{deg}\left(\pi_{2}\left(f_{2}(t)\right)\right)=2$.
On the other hand, we have $\pi_{2}(f(t))=t^{4}+t^{2}+t=t\left(t^{3}+t+[1]_{2}\right)$, where $t^{3}+t+[1]_{2} \in \mathbb{F}_{2}[t]$ is irreducible. We have arrived at a contradiction. We conclude that $f(t) \in \mathbb{Z}[t]$ is irreducible.

