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Outline

Part 1. Exploration bonus in tabular RL

- Multi-Armed Bandits (MAB)
- Markov Decision Processes (MDP)




Multi-Armed Bandits (MAB)

« We have K possible actions:

@ @ @ @ What to choose at time t?

__________________________________________________________________________________________________________________________________________________________________________________________________________

[ u; = E[rla =i] J ™ 1, 1 Ly Optimal policy: a; = arg max p;
« Naive estimates of averages: Not optimal: a, = arg miaxﬁlgt)
_(®) ZTETi(t) "z _(t) () () 0 Solutions based on random exploration:
i = T(t)‘ Hq H2 Hz= e Hk* - Epsilon-greedy
: - Softmax
Ti(t) —(r<ta,=i) . - Thompson sampling 3



Comments for the previous slide:

If we knew the exact average reward u; = E[r|a = i] of each arm, then the optimal solution would
trivially be to choose the arm with highest average reward: a; = arg max y;
l

A naive approach is to estimate the average reward by the empirical averages and greedily choose

the action with maximum estimated average reward: a; = arg maxﬁgt)
l

The naive greedy policy is prone to fail in finding the best action.

You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this
problem by adding randomness to the action-selection. Another approach to exploration is
Thompson sampling (Thompson 1933 in Biometrika). We do not discuss Thompson sampling in
this lecture.

Our focus will be on “directed exploration” by using exploration bonuses.



How to evaluate an exploratory policy?

« MAB with K possible actions:

[ u; = El[r|la =1i] ] Highest reward rate: u* = max u; @ @ @ @

* "Regret” of algorithm A (e-greedy): |« Consistent algorithms:
T lirnT—)OO RA.IET) =0 = limT—>oo EA[Z{;l 'uat] — [,l*
RA(T) = Ey4 Zu* — ﬂat]
t=1 L )
r 1 ~» | Theorem 1 of Lai and Robbins 1985:
Under specific conditions, if algorithm A is consistent, then,

The bestyou  What you | loosely speaking, R,(T) is at least proportional to log T.
could choose  chose RN /,

s
a loose notion of optimality 5



Comments for the previous slide:

Before discussing how differently one can deal with exploration-exploitation dilemma, we discuss a
common method for evaluating different algorithms in multi-armed bandits.

A key notion to evaluate an algorithm A is regret R,4(T) measuring the expected difference
between the choices of the algorithm and the best possible actions, summed over the first T steps.

RA(T)
T

vanishes over time.

An algorithm is called consistent, if its average regret

It is proven (under certain conditions; see Lai and Robbins 1985 in Advances in Applied
Mathematics) that the regret of a consistent algorithm scales at least logarithmically with time T.

This introduces a loose notion of optimality: An optimal algorithm is a consistent algorithm whose
regret scales logarithmically with time T.



An example of optimal algorithms

« MAB with K possible actions: @ @ @ @

* Reminder: greedy algorithm () (1) ~(t) ~(t)
Hq Ky M3 K
~(t) ZTETi(t) ‘ ()
i Ti(t)| ar = arg max /i,

« Upper Confidence Bound (UCB1in Auer et al. 2002):
v v v L v

1 3 K
2logt _ ®
Ui(t) _ ﬁlgt) n T(tg)‘ a, = argmax U
I if {Theorem 1Tof Auer et al. ZOOZ:J
| | R T) xlogT + const.
The naive estimate of Bonus for exploration ucea (T) «log

average reward (the same as what you saw for Monte Carlo Tree Search) ’



Comments for the previous slide:

A smart optimal algorithm is Upper Confidence Bound (UCB; proposed by Auer et al. 2002 in

Machine Learning) that computes a confidence bound index Ul-(t) for each action and chooses the
one with highest index.

The index is equal to the naive estimate average reward ﬁft) plus an exploration bonus that is (i) a

decreasing function of how many times an arm has been chosen Tl-(t)| but (i) an increasing

function of how many actions have been taken in total (i.e. t).

The regret for the UCB algorithm scales logarithmically with T, hence it is an “optimal” algorithm.
The constants of the regret can be fine-tuned by some variations of the algorithm (see Auer et al.
2002).



Outline

Part 1. Exploration bonus in tabular RL

v - Multi-Armed Bandits (MAB)
- Markov Decision Processes (MDP)




Beyond MAB

« MAB with K possible actions: @ @ @ @

* Markov Decision Processes (MDP):

« P:transition probabilities, e.qg. P(s’|s, a)

* R:expectedreward, e.g. R(s,a)

10



Exploration bonus in MDPs

* Dynamic programming with true P(s’|s,a) and R(s, a)

Q*(s,a) = R(s,a) + yz P(s’|s,a) max Q*(s’,a’)

Naive model-based (MB) RL:

0{)(s,a) = RO(s,a) + Vz PO(s'|s,a) maxQ p(s' @)

| |

a; = argmax Q*(s;, a)
a

a, = arg max @ﬁ])g (s¢, @)
a

The exploration-exploitation

Y ol (t) trade-off is even more serious in
~ TET( ) T /
R(t)(S, a) = >3 p(t)(5’|s a) = 543 MDPs than MABs.
S,a s,a . .
Any trick similar to UCB?
TS(,Z) ={t<tia; =a,s; = s} TS(;)’S, ={t<tia,=a,5; =5,S;41 =S}

11



Comments for the previous slide:

Similar to the bandit setting, it we have access to the true transition probabilities and reward

functions, then the optimal policy would be to use Dynamic Programming, solve the optimal

Bellman equations, and use a greedy policy on the resulting Q-values: a; = argmax Q*(s¢, a)
a

In the absence of the complete knowledge of the environment, a naive model-based approach is
to approximate the transition probabilities and the reward values, solve the optimal Bellman
equations by using these estimates, and use a greedy policy on the resulting Q-values: a; =

arg max QIE,% (se, a)
a

The naive model-based approach is prone to be stuck in some parts of the environment and
never find the optimal policy. You have seen epsilon-greedy and the softmax policy as to
approaches to deal with this issue by adding randomness to the action-selection. Here, we ask
whether we can find a directed exploration approach like UCB for MDPs.



MBIE+EB (Strehl and Littman 2008)

* Dynamic programming with true P(s’|s,a) and R(s, a)

Q*(s,a) = R(s,a) + yz P(s’|s,a) max Q*(s’,a’)

* Naive model-based (MB) RL:

0 (s,a) = RO(s,a) +yZP(t)(s |, a) max Ovp (s’ @)

« Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and Littman 2008):

(t) (S Q) = R(t)(s a) +

+y Z PO(s's,a) max Q(t) (s’ a’)
T(t .

The naive estimate of I
average reward Bonus for exploration  (different from UCB regarding log t) 13



Comments for the previous slide:

Model-based interval estimation with exploration bonus (MBIE+EB; proposed by Strehl and
Littrnan 2008 in the Journal of Computer and System Sciences) uses the exact same procedure as
the naive model-based approach except that it adds an exploration bonus to the reward function.

The exploration bonus is a decreasing function of how many times a specific action is taken in a
specific state, so it motivates taken actions that have been taken less often.
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Adding the exploration bonus is ‘good”

« Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and Littman 2008):

OMz(s, @) = RO(s,a) +

+yz PO(s|s, ) maXQMB(s a’)

» Theorem 2 in Strehl and Littman 2008:
MBIE+EB is Probably Approximately Correct for MDPs (= it is PAC-MDP).

{— loosely speaking, its choices are good enough with high probability. ]

« Alternative: Bayesian Exploration Bonus (BEB) by Kolter and Ng 2009

It is not PAC-MDP Theorem 2. Exploration based on a bonus proportional to

Bonus = . . -p
14Ty butis near-Bayesian. | (T&) ™ is not PAC-MDP if p > 0.5,




« Comments for the previous slide:

« MBIE+EB is proven to be PAC-MDP (see Strehl and Littman 2008): In short and loosely speaking,
this means that, with high probability, most of the actions take by MBIE+EB are close to the actions
that would have been taken by the optimal policy.

« Alternative exploration bonuses are possible, but they have different properties. For example, an

exploration bonus proportional to one over TS(’Z) is not PAC-MDP but is “near Bayesian” (i.e.,
another notion of optimality; see Kolter and Ng in ICML 2009).



Part 1. Quiz

« A consistent learning algorithm eventually achieves a zero average regret
in Multi-Armed Bandits (MAB).

B
)
Tsa

g
t
Tsa

is always better exploration bonus for MDPs than

@ « An optimal algorithm in MABs achieves a constant total regret.
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Summary

« Adding exploration bonus provably improves the performance of RL algorithms.

« Hence, to optimally seek a reward signal, one may benefit from seeking a
modification of that reward signal.

« There is, however, not a single approach to

 define a exploration bonus

« evaluate its performance.
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Outline

Part 1. Exploration bonus in tabular RL

v - Multi-Armed Bandits (MAB)
V'~ Markov Decision Processes (MDP)

Part 2. Curiosity-driven RL

- Intelligent behavior in the absence of 'reward’
- Surprise, Novelty, and Information-gain in Deep RL
- Meta-learning of the reward function
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Intelligent behavior in the absence of ‘reward’

* Intrinsically motivated RL (Singh et al. 2010)

Acti

In the traditional RL models,
rewards are always “external”:

ons

Environment

Critic

|
Rewards
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tes |

Alternative: Reward signal is essentially internal
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Actions
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- Nutrition
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|

i
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» |ntrinsic component:
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- Novelty
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- J
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Comments for the previous slide:

In the traditional view on RL, the reward signal is always external and is given to the agent by the
environment.

However, humans and animals receives only sensory inputs from their environment, and whether
these inputs feel rewarding are judged internally. Based on this argument, an alternative view on
RL has been proposed to consider the reward signal generated internally by the agent.

The internally generated reward signal consists of an extrinsic and an intrinsic component. Typical

examples for the intrinsic component of the reward signal are novelty, surprise, information, etc.
This component is believed to drive curiosity-driven behavior in humans and animals.
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Two approaches to modeling curiosity

« How should we characterize the intrinsic reward function?

« Bottom-up views: Starting from “What are we curious about?”

action (Q)
state (8)
« Top-down views: Starting from "Why are we curious?”
(Population )
Agent N fitness
( reﬂird reﬂird reﬂird measure \(
ﬁ\g(::e:ts ST Evolution
Agent 1 <
reward rerd rerd reward \_
51»@382 e a ___sT function
[Figures from Modirshanechi et al. (in preparation)] N\




Comments for the previous slide:

There is an open question on how to characterize the internal reward signal to either have the
best performance in a specific (set of) task(s) (in machine learning) or have the best model of
curiosity-driven behavior in humans and animals (in neuroscience, psychology, and cognitive
science).

Attempts to address this question can be classified into two categories. Bottom-up approaches
start with the question of “What are we curious about?” and define the internal reward based on
some heuristic reasoning (e.g., it is good to seek novelty if you want to explore all states in an
environment).

Top-down approaches start with the question of "Why are we curious?” and define reward function
as the evolutionary solution to the optimization of a fitness measure (e.q., survival rate). See Singh
et al. 2070 in IEEE Transactions on Autonomous Mental Development for more details and
discussions.
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Different intrinsic reward signals in bottom-up views

 State novelty: * The main challenge in deep RL:
NG, o =—10gPP(se1) or eg. % Very high dimensional state spaces...
St :
* Iransition surprise: « There has been TONS of work on defining,
t) _ (t) 5 finetuning, and using intrinsic rewards in
Ssparoser; = — 108 P (St41lst, ar) Deep RI_.g J
. Information gain or progress rate: . Today, we cover 3 examples.
() _ o (p® (£+1)
IG5 a5, = d (P Clse an), P77 s at)) - You can see these reviews for many more:
| | | - Aubret et al. 2019 and 2022 on arXiv
Including classic bonuses, e.g., N - - lLadosz et al. 2022 in Information Fusion
St,at !

« Others, e.g., empowerment (Klyubin et al. 2005).
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Comments for the previous slide:

In the bottom-up approach, there are many different choices of intrinsic rewards. We focus on
three classes:
1. State novelty drives agents to explore the least visited parts of the environment.
2. Surprise drives agents to explore parts of the least predictable parts of the environment.
3. Information-gain or progress rate drives agents to parts of the environment where they have
highest rate in learning/improving their model of the environment.

The information-gain and progress rate usually behave similarly to the classic exploration bonuses

and are decreasing functions of Ts(tlet.

The challenge of implementing these methods in Deep RL is the very high dimensional state
spaces in the problems of Deep RL. The simple counts do not have any meaning in such spaces.

There has been TONS of work on defining, finetuning, and using intrinsic rewards in Deep RL, but
we focus only on three examples of these methaods.



Example 1. Novelty-seeking in Deep RL

* Bellemare et al. in NeurlPS 2016 (> 1'000 citations):
* A parameterized model to define and learn PA(,t)(sHl) on the pixel space.
» Define the pseudo-count Ts(t?l based on P,\(,t)(stﬂ) (beautiful theory).
. o 0.05
¢ DOUble DQN W|th Tt+1= ’I‘t+1 +
7Y +0.01
T5t+1 '
MONTEZUMA’S REVENGE FREEWAY VENTURE H.E.R.O. PRIVATE EYE
7000 30 450 25000 ieo .. . 6000
5000} ___ lp _ - zzg: sy 4000 |
o) 250} | 3000-% "
’6 I 200 2000 , : 4
5 150 : i 1000 {ff
100 5, . T8 5 ol s 20 S0
. - - : . ot : : 0 : : ‘ ‘ ~1000 L—— ' : : )
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Training frames (millions)



« Comments for the previous slide:

« A classic example of implementing novelty-seeking in Deep RL considers a parameterized
distribution for defining and learning the state frequency (= called “density model” in the paper).

« The state frequency is used to define pseudo counts (that considers similarities between different
states) which are then used for exploration.

« Description of the methodology for the empirical results (copied from the original paper):

6.1 Exploration in Hard Atari 2600 Games

From 60 games available through the Arcade Learning Environment we selected five “hard” games,
in the sense that an e-greedy policy is inefficient at exploring them. We used a bonus of the form

R (z,a) := B(N,(z) +0.01)~ /2, 4)

where 5 = 0.05 was selected from a coarse parameter sweep. We also compared our method to the
optimistic initialization trick proposed by Machado et al. (2015). We trained our agents’ Q-functions
with Double DQN (van Hasselt et al., 2016), with one important modification: we mixed the Double
Q-Learning target with the Monte Carlo return. This modification led to improved results both with
and without exploration bonuses (details in the appendix).

 Figure caption (copied from the original paper):

Figure 2: Average training score with and without exploration bonus or optimistic initialization in 5

Atari 2600 games. Shaded areas denote inter-quartile range, dotted lines show min/max scores.
27



Example 1. Novelty-seeking in Deep RL

MONTEZUMA'S REVENGE

 Bellemare et al. in NeurIPS 20716 (> 1000 citations): ooor

—_— 1/

» Novelty-seeking
* enables efficient exploration and
e results in higher extrinsic rewards

Score

0 20 40 60 80 100

No bonus With bonus

Figure 3: “Known world” of a DQN agent trained for 50 million frames with (right) and without
(left) count-based exploration bonuses, in MONTEZUMA’S REVENGE.
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« Comments for the previous slide:

Description of the figure in the text:

MONTEZUMA’S REVENGE is perhaps the hardest Atari 2600 game available through the ALE. The
game 1s infamous for its hostile, unforgiving environment: the agent must navigate a number of
different rooms, each filled with traps. Due to its sparse reward function, most published agents
achieve an average score close to zero and completely fail to explore most of the 24 rooms that
constitute the first level (Figure 3, top). By contrast, within 50 million frames our agent learns a
policy which consistently navigates through 15 rooms (Figure 3, bottom). Our agent also achieves a
score higher than anything previously reported, with one run consistently achieving 6600 points by
100 million frames (half the training samples used by Mnih et al. (2015)). We believe the success of
our method in this game is a strong indicator of the usefulness of pseudo-counts for exploration.'
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Example 2: Surprise-seeking in Deep RL

« Pathak et al. in ICML 2017 (>2'000 citations) o —log PP (p(se41)l5e, ar)

’ Learned by minimizin i ~ 2
o o Tt ~ / 29 Ty = |¢(5t+1) — ¢(5t+1)|2
Intrinsic Curiosity Module \ 4 |P(se41) — ¢(St+1)|2 N
—ICM ICM
Aha e
s H(st41) \ 3| Imersel p 1 J
b — t N
Y : — ¢(se) d(se41)
@\ | Model f ?
Policy is learned using a at/ T f_| 3[0olE
combination of intrinsic . ! 7; . z_ L T T
and extrinsic rewards \ Ty + Ty / Tir1 T Ty1 Qg St St+1 v
(using A3C) Regularizing the

feature space



Comments for the previous slide:

Figure caption (copied from the original paper):

Figure 2. The agent in state s; interacts with the environment by executing an action a+ sampled from its current policy 7 and ends up in
the state s;11. The policy 7 is trained to optimize the sum of the extrinsic reward (r;) provided by the environment E and the curiosity
based intrinsic reward signal (r}) generated by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states s, s;1 into the
features ¢(st), #(st+1) that are trained to predict a; (i.e. inverse dynamics model). The forward model takes as inputs ¢(s:) and a+
and predicts the feature representation qAﬁ(stH) of s¢:+1. The prediction error in the feature space is used as the curiosity based intrinsic
reward signal. As there is no incentive for ¢(s;) to encode any environmental features that can not influence or are not influenced by the
agent’s actions, the learned exploration strategy of our agent is robust to uncontrollable aspects of the environment.

The proposed intrinsic motivation is proportional to — log P(t)(¢(st+1)|st, a;) if we consider

pW® (P(se41)|Se ar) to be Gaussian distribution with ¢ (se4+1) as its mean and a (scaled) identity
matrix as its covariance matrix.

Without the inverse model, training the forward model can results in a representation collapse:
¢d(s¢41) becomes independent of sy,1 which results in a trivially minimum loss for the forwara
model.
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Example 2: “Intelligent” behavior with seeking surprise

* Pathak et al. in ICML 2017 (>2'000 citations)

Seeking surprise enable agents to
learn the task in the absence of any
Curiosity Driven Exploration extrinsic reward.

by Self—SuperVised Seeking surprise enable learning skill
Prediction that are generalizable to other tasks.

ICML 2017

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell

UC Berkele
Y Link to the video:

https://youtu.be/J3FHOyhUN3A



https://youtu.be/J3FHOyhUn3A

Example 2: “Intelligent” behavior with seeking surprise

* Pathak et al. in ICML 2017 (>2'000 citations)

« Seeking surprise enables learning exploration strategies that are useful in other environments.
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« Comments for the previous slide:

Figure 4 caption (copied from the original paper):

Figure 4. Maps for VizDoom 3-D environment: (a) For general-
ization experiments (c.f. Section 4.3), map of the environment
where agent is pre-trained only using curiosity signal without any
reward from environment. ‘S’ denotes the starting position. (b)
Testing map for VizDoom experiments. Green star denotes goal
location. Blue dots refer to 17 agent spawning locations in the
map in the “dense” case. Rooms 13, 17 are the fixed start loca-
tions of agent in “sparse” and “very sparse” reward cases respec-
tively. Note that textures are also different in train and test maps.

Figure 8 caption (copied from the original paper):

Figure 8. Performance of ICM + A3C agents on the test set of Viz-
Doom in the “very sparse” reward case. Fine-tuned models learn
the exploration policy without any external rewards on the train-
ing maps and are then fine-tuned on the test map. The scratch
models are directly trained on the test map. The fine-tuned ICM +
A3C significantly outperforms ICM + A3C indicating that our cu-
riosity formulation is able to learn generalizable exploration poli-
cies. The pixel prediction based ICM agent completely fail. Note
that textures are also different in train and test.

A
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U

(a) Train Map Scenario
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Figure 4 Figure 8

Description of the results
(copied from the original paper):

Fine-tuning with extrinsic rewards: If it is the case
that the agent has actually learned useful exploratory be-
havior, then it should be able to learn quicker than start-
ing from scratch even when external rewards are provided
by environment. We perform this evaluation on VizDoom
where we pre-train the agent using curiosity reward on
a map showed in Figure 4a. We then test on the “very
sparse” reward setting of ‘DoomMyWayHome-v0’ envi-
ronment which uses a different map with novel textures
(see Figure 4b) as described earlier in Section 4.1.

Results in Figure 8 show that the ICM agent pre-trained
only with curiosity and then fine-tuned with external re-
ward learns faster and achieves higher reward than an ICM
agent trained from scratch to jointly maximize curiosity
and the external rewards. This result confirms that the
learned exploratory behavior is also useful when the agent
is required to achieve goals specified by the environment.
It is also worth noting that ICM-pixels does not generalize
to this test environment. This indicates that the proposed
mechanism of measuring curiosity is significantly better for
learning skills that generalize as compared to measuring
curiosity in the raw sensory space.




Example 2: ICM follow-up by Burda et al. in ICLR 2019

« 54 Atari game: Learning with no extrinsic reward!

BeamRider Breakout MontezumaRevenge Pong Mario
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« Comments for the previous slide:

Figure caption (copied from the original paper):

Figure 2: A comparison of feature learning methods on 8 selected Atari games and the Super Mario Bros.
These evaluation curves show the mean reward (with standard error) of agents trained purely by curiosity,
without reward or an end-of-episode signal. We see that our purely curiosity-driven agent is able to gather
rewards in these environments without using any extrinsic reward at training. Results on all of the Atari games
are in the appendix in Figure 8. We find curiosity model trained on pixels does not work well across any
environment and VAE features perform either same or worse than random and inverse dynamics features.
Further, inverse dynamics-trained features perform better than random features in 55% of the Atari games. An
interesting outcome of this analysis is that random features for modeling curiosity are a simple, yet surprisingly
strong baseline and likely to work well in half of the Atari games.
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Intermediate summary

« Reward can be seen as an internal signal consisting of an extrinsic and an intrinsic
component.

» Seeking surprise and novelty as intrinsic rewards can lead to

« efficient exploration for finding sources of extrinsic rewards.

 self-supervised learning of complex behavior even in the absence of rewards.
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Part 1. Exploration bonus in tabular RL

v - Multi-Armed Bandits (MAB)
V'~ Markov Decision Processes (MDP)

Part 2. Curiosity-driven RL

V' - Intelligent behavior in the absence of 'reward’

v - Surprise, Novelty, ard-rformation-gain in Deep RL

- Meta-learning of the reward function
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