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Part 2. Curiosity-driven RL
- Intelligent behavior in the absence of ’reward’
- Surprise, Novelty, and Information-gain in Deep RL
- Meta-learning of the reward function
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- Noisy TV problem in curiosity driven Deep RL
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Part 1. Exploration bonus in tabular RL
- Multi-Armed Bandits (MAB)
- Markov Decision Processes (MDP)
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Multi-Armed Bandits (MAB)

• We have 𝐾 possible actions:

1 2 3 𝐾…

• With true average reward:

𝜇! 𝜇" 𝜇# 𝜇$… Optimal policy: 𝑎% = argmax
&
𝜇&

What to choose at time 𝑡?

• Naïve estimates of averages:

/𝜇!
% /𝜇"

% /𝜇#
% /𝜇$

%…

Not optimal: 𝑎% = argmax
&

/𝜇&
%

𝜇& = 𝐸 𝑟|𝑎 = 𝑖

/𝜇&
% =

∑
'∈)!

" 𝑟'

𝑇&
%

Solutions based on random exploration:
- Epsilon-greedy
- Softmax
- Thompson sampling𝑇&

% = 𝜏 ≤ 𝑡: 𝑎' = 𝑖
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• Comments for the previous slide:

• If we knew the exact average reward 𝜇& = 𝐸 𝑟|𝑎 = 𝑖 of each arm, then the optimal solution would 
trivially be to choose the arm with highest average reward: 𝑎% = argmax

&
𝜇&

• A naïve approach is to estimate the average reward by the empirical averages and greedily choose 
the action with maximum estimated average reward: 𝑎% = argmax

&
/𝜇&
%

• The naïve greedy policy is prone to fail in finding the best action.

• You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this 
problem by adding randomness to the action-selection. Another approach to exploration is 
Thompson sampling (Thompson 1933 in Biometrika). We do not discuss Thompson sampling in 
this lecture. 

• Our focus will be on “directed exploration” by using exploration bonuses.
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How to evaluate an exploratory policy?

• MAB with 𝐾 possible actions:

1 2 3 𝐾…

• “Regret” of algorithm 𝐴 (𝜖-greedy):

Highest reward rate: 𝜇∗ = max
&
𝜇&𝜇& = 𝐸 𝑟|𝑎 = 𝑖

𝑅+ 𝑇 = 𝐸+ <
%,!

)

𝜇∗ − 𝜇-"

The best you
could choose

What you 
chose

• Consistent algorithms:

lim)→/
0# )
)

= 0 ⟹ lim)→/
1# ∑"$%& 3'"

)
= 𝜇∗

• Theorem 1 of Lai and Robbins 1985:
Under specific conditions, if algorithm 𝐴 is consistent, then, 
loosely speaking, 𝑅+ 𝑇 is at least proportional to log 𝑇.

a loose notion of optimality
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• Comments for the previous slide:

• Before discussing how differently one can deal with exploration-exploitation dilemma, we discuss a 
common method for evaluating different algorithms in multi-armed bandits.

• A key notion to evaluate an algorithm 𝐴 is regret 𝑅+ 𝑇 measuring the expected difference 
between the choices of the algorithm and the best possible actions, summed over the first 𝑇 steps.

• An algorithm is called consistent, if its average regret 0# )
)

vanishes over time.

• It is proven (under certain conditions; see Lai and Robbins 1985 in Advances in Applied 
Mathematics) that the regret of a consistent algorithm scales at least logarithmically with time 𝑇. 

• This introduces a loose notion of optimality: An optimal algorithm is a consistent algorithm whose 
regret scales logarithmically with time 𝑇. 
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An example of optimal algorithms

• MAB with 𝐾 possible actions:

• Upper Confidence Bound (UCB1 in Auer et al. 2002):

/𝜇&
% =

∑
'∈)!

" 𝑟'

𝑇&
%

1 2 3 𝐾…

𝑈!
% 𝑈"

% 𝑈#
% 𝑈$

%…

𝑎% = argmax
&
𝑈&

%
𝑈&

% = /𝜇&
% +

2 log 𝑡

𝑇&
%

• Reminder: greedy algorithm
/𝜇!
% /𝜇"

% /𝜇#
% /𝜇$

%…

𝑎% = argmax
&

/𝜇&
%

The naïve estimate of 
average reward

Bonus for exploration
(the same as what you saw for Monte Carlo Tree Search)

Theorem 1 of Auer et al. 2002: 
𝑅456! 𝑇 ∝ log 𝑇 + const.
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• Comments for the previous slide:

• A smart optimal algorithm is Upper Confidence Bound (UCB; proposed by Auer et al. 2002 in 
Machine Learning) that computes a confidence bound index 𝑈&

% for each action and chooses the 
one with highest index.

• The index is equal to the naïve estimate average reward /𝜇&
% plus an exploration bonus that is (i) a 

decreasing function of how many times an arm has been chosen 𝑇&
% but (ii) an increasing 

function of how many actions have been taken in total (i.e. 𝑡).

• The regret for the UCB algorithm scales logarithmically with 𝑇, hence it is an “optimal” algorithm. 
The constants of the regret can be fine-tuned by some variations of the algorithm (see Auer et al. 
2002).
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Beyond MAB

• MAB with 𝐾 possible actions: 1 2 3 𝐾…

• 𝑃: transition probabilities, e.g. 𝑃 𝑠’|𝑠, 𝑎

• 𝑅: expected reward, e.g. 𝑅 𝑠, 𝑎

• Markov Decision Processes (MDP):

𝑎%

𝑠%7!𝑟%𝑠%𝑟%8!

𝑎%7!

𝑠%7"𝑟%7!… …



• Dynamic programming with true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 :

11

Exploration bonus in MDPs

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾<
9’

𝑃 𝑠’|𝑠, 𝑎 max
-’

𝑄∗ 𝑠’, 𝑎’

Q𝑄;6
% 𝑠, 𝑎 = Q𝑅 % 𝑠, 𝑎 + 𝛾<

9’

Q𝑃 % 𝑠’|𝑠, 𝑎 max
-’

Q𝑄;6
% 𝑠’, 𝑎’

• Naïve model-based (MB) RL:

𝑎% = argmax
-
𝑄∗ 𝑠%, 𝑎

Q𝑅 % 𝑠, 𝑎 =
∑
'∈)(,'

" 𝑟'

𝑇9,-
%

𝑇9,-
% = 𝜏 ≤ 𝑡: 𝑎' = 𝑎, 𝑠' = 𝑠

Q𝑃 % 𝑠’|𝑠, 𝑎 =
𝑇9,-,9*
%

𝑇9,-
%

𝑎% = argmax
-

Q𝑄;6
% 𝑠%, 𝑎

𝑇9,-,9*
% = 𝜏 ≤ 𝑡: 𝑎' = 𝑎, 𝑠' = 𝑠, 𝑠'7! = 𝑠=

Any trick similar to UCB?

The exploration-exploitation 
trade-off is even more serious in 

MDPs than MABs.
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• Comments for the previous slide:

• Similar to the bandit setting, if we have access to the true transition probabilities and reward 
functions, then the optimal policy would be to use Dynamic Programming, solve the optimal 
Bellman equations, and use a greedy policy on the resulting Q-values: 𝑎% = argmax

-
𝑄∗ 𝑠%, 𝑎

• In the absence of the complete knowledge of the environment, a naïve model-based approach is 
to approximate the transition probabilities and the reward values, solve the optimal Bellman 
equations by using these estimates, and use a greedy policy on the resulting Q-values: 𝑎% =
argmax

-
Q𝑄;6
% 𝑠%, 𝑎

• The naïve model-based approach is prone to be stuck in some parts of the environment and 
never find the optimal policy. You have seen epsilon-greedy and the softmax policy as to 
approaches to deal with this issue by adding randomness to the action-selection. Here, we ask 
whether we can find a directed exploration approach like UCB for MDPs.
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MBIE+EB (Strehl and Littman 2008)

• Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and Littman 2008):

• Dynamic programming with true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 :

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾<
9’

𝑃 𝑠’|𝑠, 𝑎 max
-’

𝑄∗ 𝑠’, 𝑎’

Q𝑄;6
% 𝑠, 𝑎 = Q𝑅 % 𝑠, 𝑎 + 𝛾<

9’

Q𝑃 % 𝑠’|𝑠, 𝑎 max
-’

Q𝑄;6
% 𝑠’, 𝑎’

• Naïve model-based (MB) RL:

Q𝑄;6
% 𝑠, 𝑎 = Q𝑅 % 𝑠, 𝑎 +

𝛽

𝑇9,-
%
+ 𝛾<

9’

Q𝑃 % 𝑠’|𝑠, 𝑎 max
-’

Q𝑄;6
% 𝑠’, 𝑎’

The naïve estimate of 
average reward Bonus for exploration (different from UCB regarding log 𝑡)
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• Comments for the previous slide:

• Model-based interval estimation with exploration bonus (MBIE+EB; proposed by Strehl and 
Littman 2008 in the Journal of Computer and System Sciences) uses the exact same procedure as 
the naïve model-based approach except that it adds an exploration bonus to the reward function.

• The exploration bonus is a decreasing function of how many times a specific action is taken in a 
specific state, so it motivates taken actions that have been taken less often.
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Adding the exploration bonus is “good”

• Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and Littman 2008):

Q𝑄;6
% 𝑠, 𝑎 = Q𝑅 % 𝑠, 𝑎 +

𝛽

𝑇9,-
%
+ 𝛾<

9’

Q𝑃 % 𝑠’|𝑠, 𝑎 max
-’

Q𝑄;6
% 𝑠’, 𝑎’

• Theorem 2 in Strehl and Littman 2008:
MBIE+EB is Probably Approximately Correct for MDPs (= it is PAC-MDP).

= loosely speaking, its choices are good enough with high probability.

• Alternative: Bayesian Exploration Bonus (BEB) by Kolter and Ng 2009

Bonus = 
S

TUV!,#
$

It is not PAC-MDP
but is near-Bayesian.

Theorem 2. Exploration based on a bonus proportional to
𝑇9,-
% 8>

is not PAC-MDP if 𝑝 > 0.5.
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• Comments for the previous slide:

• MBIE+EB is proven to be PAC-MDP (see Strehl and Littman 2008): In short and loosely speaking, 
this means that, with high probability, most of the actions take by MBIE+EB are close to the actions 
that would have been taken by the optimal policy.

• Alternative exploration bonuses are possible, but they have different properties. For example, an 
exploration bonus proportional to one over 𝑇9,-

% is not PAC-MDP but is “near Bayesian” (i.e., 
another notion of optimality; see Kolter and Ng in ICML 2009).
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Part 1: Quiz

• A consistent learning algorithm eventually achieves a zero average regret
in Multi-Armed Bandits (MAB).

?

• !

"!,#
$

is always better exploration bonus for MDPs than !
"!,#
$ .?

• An optimal algorithm in MABs achieves a constant total regret.?
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Summary

• Adding exploration bonus provably improves the performance of RL algorithms.

• There is, however, not a single approach to

• define a exploration bonus
• evaluate its performance.

• Hence, to optimally seek a reward signal, one may benefit from seeking a
modification of that reward signal.
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Intelligent behavior in the absence of ’reward’

• Intrinsically motivated RL (Singh et al. 2010)

• In the traditional RL models, 
rewards are always “external”:

• Alternative: Reward signal is essentially internal

Extrinsic component:
- Nutrition
- Money
- etc.

Intrinsic component:
- Information/Knowledge
- Surprise
- Novelty
- etc.What results in curiosity-driven 

behavior
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• Comments for the previous slide:

• In the traditional view on RL, the reward signal is always external and is given to the agent by the 
environment.

• However, humans and animals receives only sensory inputs from their environment, and whether 
these inputs feel rewarding are judged internally. Based on this argument, an alternative view on 
RL has been proposed to consider the reward signal generated internally by the agent.

• The internally generated reward signal consists of an extrinsic and an intrinsic component. Typical 
examples for the intrinsic component of the reward signal are novelty, surprise, information, etc. 
This component is believed to drive curiosity-driven behavior in humans and animals.
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Two approaches to modeling curiosity

• How should we characterize the intrinsic reward function?

reward

action (   )

state (   )

EnvironmentAgent

Agent N
reward

Env.Agent

reward

Env. ...Agent

reward

Env.Agent
Agent 3

reward

Env.Agent

reward

Env. ...Agent

reward

Env.Agent

Agent 2
reward

Env.Agent

reward

Env. ...Agent

reward

Env.Agent
reward
function

fitness
measure

Evolution

Population

..
.

Agent 1
reward

Env.Agent

reward

Env. ...Agent

reward

Env.Agent

• Bottom-up views: Starting from “What are we curious about?”

• Top-down views: Starting from “Why are we curious?”

[Figures from Modirshanechi et al. (in preparation)]



23

• Comments for the previous slide:

• There is an open question on how to characterize the internal reward signal to either have the 
best performance in a specific (set of ) task(s) (in machine learning) or have the best model of 
curiosity-driven behavior in humans and animals (in neuroscience, psychology, and cognitive 
science).

• Attempts to address this question can be classified into two categories. Bottom-up approaches 
start with the question of “What are we curious about?” and define the internal reward based on 
some heuristic reasoning (e.g., it is good to seek novelty if you want to explore all states in an 
environment).

• Top-down approaches start with the question of “Why are we curious?” and define reward function 
as the evolutionary solution to the optimization of a fitness measure (e.g., survival rate). See Singh 
et al. 2010 in IEEE Transactions on Autonomous Mental Development for more details and 
discussions.
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Different intrinsic reward signals in bottom-up views

• State novelty:

• Transition surprise:

• Information gain or progress rate:

𝑁9",-"→9"+%
% = − log𝑃?

% 𝑠%7!

𝑆9",-"→9"+%
% = − log𝑃 % 𝑠%7!|𝑠%, 𝑎%

𝐼𝐺9",-"→9"+%
% = 𝑑 𝑃 % . |𝑠%, 𝑎% , 𝑃

%7! . |𝑠%, 𝑎%

• Others, e.g., empowerment (Klyubin et al. 2005). 

• The main challenge in deep RL:
Very high dimensional state spaces…

• There has been TONS of work on defining, 
finetuning, and using intrinsic rewards in 
Deep RL. 

You can see these reviews for many more: 
- Aubret et al. 2019 and 2022 on arXiv
- Ladosz et al. 2022 in Information Fusion

• Today, we cover 3 examples.

Including classic bonuses, e.g., !
)(",'"
" .

or, e.g., !
)("
" .
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• Comments for the previous slide:

• In the bottom-up approach, there are many different choices of intrinsic rewards. We focus on 
three classes: 
1. State novelty drives agents to explore the least visited parts of the environment.
2. Surprise drives agents to explore parts of the least predictable parts of the environment.
3. Information-gain or progress rate drives agents to parts of the environment where they have 

highest rate in learning/improving their model of the environment.

• The information-gain and progress rate usually behave similarly to the classic exploration bonuses 
and are decreasing functions of 𝑇9",-"

% .

• The challenge of implementing these methods in Deep RL is the very high dimensional state 
spaces in the problems of Deep RL. The simple counts do not have any meaning in such spaces.

• There has been TONS of work on defining, finetuning, and using intrinsic rewards in Deep RL, but 
we focus only on three examples of these methods.
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Example 1: Novelty-seeking in Deep RL

• Bellemare et al. in NeurIPS 2016 (> 1’000 citations):
• A parameterized model to define and learn 𝑃?

% 𝑠%7! on the pixel space.  

• Define the pseudo-count Q𝑇9"+%
% based on 𝑃?

% 𝑠%7! (beautiful theory).

• Double DQN with 𝑟%7!= 𝑟%7!@ + A.AC

D)("+%
" 7A.A!
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• Comments for the previous slide:

• Figure caption (copied from the original paper):

• Description of the methodology for the empirical results (copied from the original paper):

• A classic example of implementing novelty-seeking in Deep RL considers a parameterized 
distribution for defining and learning the state frequency (= called “density model” in the paper).

• The state frequency is used to define pseudo counts (that considers similarities between different 
states) which are then used for exploration. 
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Example 1: Novelty-seeking in Deep RL

• Bellemare et al. in NeurIPS 2016 (> 1’000 citations):

• Novelty-seeking 
• enables efficient exploration and 
• results in higher extrinsic rewards
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• Comments for the previous slide:

• Description of the figure in the text:



Example 2: Surprise-seeking in Deep RL

• Pathak et al. in ICML 2017 (>2’000 citations)

= Q𝜙 𝑠%7! − 𝜙 𝑠%7! "
"

Policy is learned using a 
combination of intrinsic 
and extrinsic rewards 

(using A3C)

Learned by minimizing 
Q𝜙 𝑠%7! − 𝜙 𝑠%7! "

"

Regularizing the 
feature space

∝ − log𝑃 % 𝜙(𝑠%7!)|𝑠%, 𝑎%

Intrinsic Curiosity Module
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• Comments for the previous slide:

• Figure caption (copied from the original paper):

• The proposed intrinsic motivation is proportional to − log𝑃 % 𝜙(𝑠%7!)|𝑠%, 𝑎% if we consider  
𝑃 % 𝜙(𝑠%7!)|𝑠%, 𝑎% to be Gaussian distribution with Q𝜙 𝑠%7! as its mean and a (scaled) identity 
matrix as its covariance matrix.

• Without the inverse model, training the forward model can results in a representation collapse: 
𝜙(𝑠%7!) becomes independent of 𝑠%7! which results in a trivially minimum loss for the forward 
model.
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Example 2: “Intelligent“ behavior with seeking surprise

• Pathak et al. in ICML 2017 (>2’000 citations)

• Seeking surprise enable agents to 
learn the task in the absence of any 
extrinsic reward.

• Seeking surprise enable learning skill 
that are generalizable to other tasks.

Link to the video: 
https://youtu.be/J3FHOyhUn3A

https://youtu.be/J3FHOyhUn3A
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Example 2: “Intelligent“ behavior with seeking surprise

• Pathak et al. in ICML 2017 (>2’000 citations)

• Seeking surprise enables learning exploration strategies that are useful in other environments.
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• Comments for the previous slide:

• Figure 4 caption (copied from the original paper):

Figure 4 Figure 8

• Figure 8 caption (copied from the original paper):

• Description of the results
(copied from the original paper):
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Example 2: ICM follow-up by Burda et al. in ICLR 2019

• 54 Atari game: Learning with no extrinsic reward!
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• Comments for the previous slide:

• Figure caption (copied from the original paper):
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Intermediate summary

• Reward can be seen as an internal signal consisting of an extrinsic and an intrinsic
component.

• Seeking surprise and novelty as intrinsic rewards can lead to

• efficient exploration for finding sources of extrinsic rewards.

• self-supervised learning of complex behavior even in the absence of rewards.
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