Exercice 1. (a) As $\alpha \notin K^p$ it follows that for all $\beta \in K$ we have $\beta^p \neq \alpha$ and thus $x^p - \alpha \in K[x]$ does not admit roots in K. Let F be a decomposition field of $x^p - \alpha$ over K and let $\beta \in F$ be a root of this polynomial. We have that:

$$x^p - \alpha = x^p - \beta^p = (x - \beta)^p$$
 in $F[x]$.

Let $m_{\beta,K}(x) \in K[x]$ denote the minimal polynomial of β over K. As β is a root of $x^p - \alpha$, it follows that $m_{\beta,K}(x)|x^p - \alpha = (x - \beta)^p$. Therefore there exists some $i, 1 \leq i \leq p$, such that $m_{\beta,K}(x) = (x - \beta)^i$. Now, as $m_{\beta,K}(x) \in K[x]$ we have that:

$$(x-\beta)^{i} = \sum_{j=0}^{i} (-1)^{j} {i \choose j} x^{i-j} \beta^{j} = x^{i} - i\beta x^{i-1} + \dots + (-1)^{i} \beta^{i} \in K[x].$$

It follows that $-i\beta = 0$ and so i = p. Therefore $m_{\beta,K}(x) = (x - \beta)^p = x^p - \alpha$ and we conclude that $x^p - \alpha \in K[x]$ is irreducible.

- (b) To show that L is a field, we will show that the polynomial $y^2 x(x-1)(x+1) \in (\mathbb{F}_p(x))[y]$ is irreducible. As $y^2 - x(x-1)(x+1)$ is a unitary polynomial, it is primitive and so, by Gauss III, it is irreducible in $(\mathbb{F}_p(x))[y]$ if and only if it is irreducible in $(\mathbb{F}_p[x])[y]$. Now, $x \in \mathbb{F}_p[x]$ is irreducible and we use Eisenstein with "p = x" (here p denotes the irreducible in Eisenstein criterion) to deduce that $y^2 - x(x-1)(x+1)$ is irreducible in $(\mathbb{F}_p[x])[y]$.
- (c) By Proposition 4.5.7, as char(L) = p, we have that L is perfect if and only if $L^p = L$. We will show that $x \notin L^p$.

Assume by contradiction that $x \in L^p$. Then, there exists $f \in L$ such that $x = f^p$. It follows that $f \in L$ is a root of the polynomial $t^p - x \in \mathbb{F}_p(x)[t]$. As $x \in \mathbb{F}_p(x)$ is not a p^{th} power, see Exercise 3, it follows that the polynomial $t^p - x$ is irreducible in $(\mathbb{F}_p(x))[t]$, see item (a). This shows that $m_{f,\mathbb{F}_p(x)}(t) \sim t^p - x \in (\mathbb{F}_p(x))[t]$.

Consider the chain of extensions:

$$\mathbb{F}_p(x) \subseteq (\mathbb{F}_p(x))(f) \subseteq L$$

and we have $[(\mathbb{F}_p(x))(f) : \mathbb{F}_p(x)]|[L : \mathbb{F}_p(x)]$. But $[L : \mathbb{F}_p(x)] = 2$ and $[(\mathbb{F}_p(x))(f) : \mathbb{F}_p(x)] = p$, where $p \neq 2$. We have arrived at a contradiction.

(d) We have that $L = (\mathbb{F}_2(x))[y]/(y^2 + x(x+1)^2)$. Note that the polynomial $y^2 + x(x+1)^2 \in (\mathbb{F}_2(x))[y]$ admits $\sqrt{x}(x+1)$ as a double root and so it is irreducible in $(\mathbb{F}_2(x))[y]$. Now, by Proposition 4.2.25, it follows that $L = (\mathbb{F}_2(x))(\sqrt{x}(x+1)) = (\mathbb{F}_2(x))(\sqrt{x}) = \mathbb{F}_2(\sqrt{x})$. For the last equality, note that $\mathbb{F}_2(\sqrt{x}) \subseteq (\mathbb{F}_2(x))(\sqrt{x})$ and, as $\mathbb{F}_2(x) \subseteq \mathbb{F}_2(\sqrt{x})$, we have $(\mathbb{F}_2(x))(\sqrt{x}) \subseteq (\mathbb{F}_2(\sqrt{x}))(\sqrt{x}) = \mathbb{F}_2(\sqrt{x})$.

As char(L) = 2, it follows that L is perfect if and only if $L^2 = L$, see Proposition 4.5.7. But

$$L^{2} = \{ f(\sqrt{x})^{2} | f(\sqrt{x}) \in L \} = \left\{ \left(\frac{f_{1}(\sqrt{x})}{f_{2}(\sqrt{x})} \right)^{2} | f_{1}(\sqrt{x}), f_{2}(\sqrt{x}) \in \mathbb{F}_{2}[\sqrt{x}], f_{2}(\sqrt{x}) \neq 0 \right\}$$
$$= \left\{ \frac{f_{1}(x)}{f_{2}(x)} | f_{1}(x), f_{2}(x) \in \mathbb{F}_{2}[x], f_{2}(x) \neq 0 \right\} = \mathbb{F}_{2}(x)$$

and clearly $\sqrt{x} \notin L^2$.

- **Exercice 2**(a)(i) Let $\alpha \in L \setminus K$. As $\alpha^2 \in K$, it follows that α is a root of the polynomial $x^2 + \alpha^2 \in K[x]$ and thus $[K(\alpha) : K] \leq 2$. On the other hand, we have that $[K(\alpha) : K] \geq 2$, as $\alpha \notin K$, and we conclude that $[K(\alpha) : K] = 2$ and $K(\alpha) = L$.
 - (ii) The polynomial $x^2 + \alpha^2 \in K[x]$, where $\alpha \in L \setminus K$, admits α as a double root, hence it is irreducible in K[x]. Now, as this is a unitary irreducible polynomial of degree 2 and as $\alpha \notin K$, it follows that $m_{\alpha,K}(x) = x^2 + \alpha^2$ and so we conclude that $\alpha \in L \setminus K$ is inseparable.
- (b)(i) Let $\alpha \in L \setminus K$ be such that $\alpha^2 \notin K$. First, we have that $[K(\alpha) : K] \ge 2$ and, as $K(\alpha) \subseteq L$, it follows that $[K(\alpha) : K] \le [L : K] = 2$, and so $[K(\alpha) : K] = 2$, hence $K(\alpha) = L$.

Secondly, as $\alpha^2 \in K(\alpha)$ and $\alpha^2 \notin K$, there exist $a, b \in K$, $a \neq 0$, such that $\alpha^2 = a\alpha + b$. Then:

$$\left(\frac{\alpha}{a}\right)^2 = \left(\frac{\alpha}{a}\right) + \frac{b}{a^2}.$$

Set $\beta = \frac{\alpha}{a} \in K(\alpha)$ and $c = \frac{b}{a^2} \in K$. We have that $K(\alpha) = K(\frac{\alpha}{a}) = K(\beta)$ and so $L = K(\beta)$. Moreover, β is a root of the unitary polynomial $x^2 + x + c \in K[x]$ and, as $[K(\beta) : K] = 2$, we conclude that $m_{\beta,K}(x) = x^2 + x + c$.

- (ii) Note that a polynomial of the form $x^2 + x + c$ is always separable as the derivative is $1 \neq 0$. So, β is automatically separable. Now $\beta + 1 \in K(\beta)$ is a root of $m_{\beta,K}(x)$, as $(\beta+1)^2 + (\beta+1) + c = \beta^2 + \beta + c = 0$, and we conclude that $\tau : K(\beta) \to K(\beta)$ given by $\tau(\beta) = \beta + 1$ is an automorphism of $K(\beta)$. Then, by Proposition 4.6.3.4 we have that $|\operatorname{Gal}(K(\beta)/K)| = 2$.
- (iii) Note that $K(\beta)^{\langle \tau \rangle} = K$ by theorem 4.6.13. If $\gamma \in L \setminus K$ then $\tau(\gamma) \neq \gamma$ and by proposition 4.6.3.(3), we get that the minimal polynomial of γ is $(t \gamma)(t \tau(\gamma))$. Therefore $K \subset L$ is separable.

Exercice 3.

We use the same techniques as in Example 4.6.5, and denote $G = \operatorname{Gal}(K/\mathbb{Q}) = \operatorname{Aut}_{\mathbb{Q}}(K)$.

- Let $K = \mathbb{Q}(i)$. The irreducible polynomial $x^2 + 1 \in \mathbb{Q}[x]$ has two distinct roots in $\mathbb{Q}(i)$, and they are *i* and -i. From Prop 4.6.3(1), it follows that every element in *G* sends *i* to *i* or to -i. By Prop 4.6.3(2), there is at most one element in *G* for each possibility. By Prop 4.6.3(4), it holds that $|\operatorname{Gal}(K/\mathbb{Q})| = [\mathbb{Q}(i) : \mathbb{Q}] = 2$, hence $\operatorname{Gal}(K/\mathbb{Q}) = \{\operatorname{id}_{\mathbb{Q}(i)}, \sigma\} \cong \mathbb{Z}/2\mathbb{Z}$, where (the identity sends *i* to *i*, and) σ sends *i* to -i. As σ is \mathbb{Q} -linear, we have that $\sigma(a + ib) = a - ib$, the conjugation.
- Let $K = \mathbb{Q}(\sqrt{7})$. Using the same steps as above, considering the irreducible polynomial $x^2 7 \in \mathbb{Q}[x]$, we get that $\operatorname{Gal}(K/\mathbb{Q}) = \{\operatorname{id}_{\mathbb{Q}(\sqrt{7})}, \sigma\} \cong \mathbb{Z}/2\mathbb{Z}$, where (the identity sends $\sqrt{7}$ to $\sqrt{7}$, and) σ sends $\sqrt{7}$ to $-\sqrt{7}$. As σ is \mathbb{Q} -linear, we have that $\sigma(a + \sqrt{7}b) = a \sqrt{7}b$.
- Let $K = \mathbb{Q}(\sqrt[3]{2})$. The irreducible polynomial $x^3 2 \in \mathbb{Q}[x]$ has only one root in $\mathbb{Q}(\sqrt[3]{2})$. As by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial by an element in G, and for each such possibility there is at most one element in G by Prop 4.6.3(2), we conclude that $G = \{ \operatorname{id}_{\mathbb{Q}(\sqrt[3]{2})} \}$ is trivial.
- Let $K = \mathbb{Q}(\omega^2)$, where $\omega = e^{2i\pi/3}$. The irreducible polynomial $x^2 + x + 1 \in \mathbb{Q}[x]$ has two roots in $\mathbb{Q}(\omega)$, which are ω and ω^2 . As for the first and second example, it follows that G is cyclic of order two, consisting of the identity and σ , which sends ω to ω^2 . We have in fact $K = \mathbb{Q}(i\sqrt{3})$, and one can argue as in the first two points.

Exercice 4.

We have the following extension tower:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}).$$

The extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is Galois, as \mathbb{Q} is a perfect field and $\mathbb{Q}(\sqrt{2})$ is the decomposition field of the polynomial $x^2 - 2 \in \mathbb{Q}[x]$, see Theorem 4.6.15. Similarly, the extension $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is Galois, as $\mathbb{Q}(\sqrt{2})$ is perfect and $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is the decomposition field of the polynomial $x^2 - 1 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.

We now consider the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$. We note that this extension is of degree 4. We also note by developing

$$(x^2 - (1 + \sqrt{2}))(x^2 - (1 - \sqrt{2}))$$

that $\sqrt{1+\sqrt{2}}$ is a root of the polynomial $x^4 - 2x^2 - 1 \in \mathbb{Q}[x]$, hence $m_{\sqrt{1+\sqrt{2}},\mathbb{Q}}(x) = x^4 - 2x^2 - 1$ by the degree because $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] = 4$. Moreover, the other roots of $x^4 - 2x^2 - 1$ are $-\sqrt{1+\sqrt{2}}$ and $\pm\sqrt{1-\sqrt{2}}$. Now, we remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$, therefore $\pm\sqrt{1-\sqrt{2}} \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}})/\mathbb{Q})$. Then $\sigma(\sqrt{1}+\sqrt{2}) \in \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $m_{\sqrt{1+\sqrt{2}},\mathbb{Q}}(x)$ and thus $\sigma(\sqrt{1}+\sqrt{2}) = \pm\sqrt{1+\sqrt{2}}$, see Proposition 4.6.3 (c). It follows that $|\operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}})/\mathbb{Q})| = 2$ and we conclude, using Corollary 4.6.13, that the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is not Galois.

Exercice 5.

In the following solutions, we use the same technique to find the minimal polynomials as in Example 4.6.11. With Proposition 4.6.10, it holds that for an element $z \in \mathbb{Q}(\alpha, \beta)$, the minimal polynomial is $m_{z,\mathbb{Q}} = \prod_{z'} (x - z')$, where z' is a Galois conjugate of z.

1. As in Example 4.6.4 (3), we see that $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The elements in G are the identity, σ , with $\sigma(\sqrt{3}) = \sqrt{3}$ and $\sigma(\sqrt{7}) = -\sqrt{7}$, τ with $\tau(\sqrt{3}) = -\sqrt{3}$ and $\tau(\sqrt{7}) = \sqrt{7}$, and $\tau\sigma$, with $\tau\sigma(\sqrt{3}) = -\sqrt{3}$ and $\tau\sigma(\sqrt{7}) = -\sqrt{7}$.

The elements $\{1, \sqrt{3}, \sqrt{7}, \sqrt{3}\sqrt{7}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, \sqrt{7})$ over \mathbb{Q} . Now let $z \in \mathbb{Q}(\alpha, \beta)$, with $z = a + b\sqrt{3} + c\sqrt{7} + d\sqrt{3}\sqrt{7}$. The conjugates of z are

$$z, \quad a + b\sqrt{3} - c\sqrt{7} - d\sqrt{3}\sqrt{7}, \quad a - b\sqrt{3} + c\sqrt{7} - d\sqrt{3}\sqrt{7}, \quad a - b\sqrt{3} - c\sqrt{7} + d\sqrt{3}\sqrt{7}.$$

As noted above, the minimal polynomial is

$$m_{z,\mathbb{Q}} = (x-z)(x - (a+b\sqrt{3}-c\sqrt{7}-d\sqrt{3}\sqrt{7}))(x - (a-b\sqrt{3}+c\sqrt{7}-d\sqrt{3}\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}-c\sqrt{7}+d\sqrt{3}\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}-c\sqrt{7}+d\sqrt{3}-d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}-d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}-d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{3}-d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{7}))(x - (a-b\sqrt{3}-c\sqrt{7}+d\sqrt{7}))(x - (a-b\sqrt{7}+d\sqrt{7}+d\sqrt{7}))(x - (a-b\sqrt{7}+d\sqrt{7}+d\sqrt{7}+d\sqrt{7}))(x - (a-b\sqrt{7}+d\sqrt{7}+d$$

if all factors are different. Hence the minimal polynomials of the elements $\sqrt{3}, \sqrt{3} + \sqrt{7}, \sqrt{3} \cdot \sqrt{7}, \sqrt{3}^{-1}$ are

$$\begin{split} m_{\sqrt{3},\mathbb{Q}} &= x^2 - 3\\ m_{\sqrt{3}+\sqrt{7},\mathbb{Q}} &= (x - \sqrt{3} - \sqrt{7})(x - \sqrt{3} + \sqrt{7})(x + \sqrt{3} - \sqrt{7})(x + \sqrt{3} + \sqrt{7})\\ m_{\sqrt{3}\cdot\sqrt{7},\mathbb{Q}} &= (x - \sqrt{3}\sqrt{7})(x + \sqrt{3}\sqrt{7})\\ m_{\sqrt{3}^{-1},\mathbb{Q}} &= x^2 - \frac{1}{3}. \end{split}$$

2. We note that since $\beta = -1 \in \mathbb{Q}$, it holds that $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha)$. α is a root of the polynomial $x^3 + 1$. The other two roots are -1, and $e^{-2i\pi/3} = \overline{\alpha}$. Since one of the roots is contained in \mathbb{Q} , over which every element of the Galois group acts as the identity we get by Prop 4.6.3 (1) that every element of the Galois group G either sends α to α , or to $\overline{\alpha}$. By (b), there exists at most one element for each possibility. Hence $|G| \leq 2$. There are exactly two automorphisms, one being the identity, and the other acting on α by sending α to $\overline{\alpha}$. Therefore, $G \cong \mathbb{Z}/2\mathbb{Z}$. Again, we calculate the minimal polynomial of an element $z = (a + b\alpha) \in \mathbb{Q}(\alpha)$ as above. Its

minimal polynomial is $m_{z,\mathbb{Q}} = (x - a - b\alpha)(x - a - b\overline{\alpha})$, if the factors are different. We get

$$m_{\alpha,\mathbb{Q}} = (x - \alpha)(x - \overline{\alpha}) = x^2 - x + 1$$
$$m_{\alpha+\beta,\mathbb{Q}} = x^2 + x + 1$$
$$m_{\alpha\cdot\beta,\mathbb{Q}} = x^2 + x + 1$$
$$m_{\alpha^{-1},\mathbb{Q}} = x^2 - x + 1$$

3. Let $\alpha = e^{(\pi i/3)}$ and $\beta = i$. Since $\alpha = \cos(\pi/3) + i\sin(\pi/3) = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$, it follows that $\alpha \in \mathbb{Q}(i\sqrt{3})$, and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(i\sqrt{3})$. With $i\sqrt{3} = 2\alpha - 1$, it follows that $i\sqrt{3} \in \mathbb{Q}(\alpha)$, and $\mathbb{Q}(i\sqrt{3}) \subseteq \mathbb{Q}(\alpha)$. With this, it follows that $\mathbb{Q}(\alpha) = \mathbb{Q}(i\sqrt{3})$. Furthermore, $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(i\sqrt{3}, i) = \mathbb{Q}(\sqrt{3}, i)$. As in Example 4.6.4 (c), we see that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i)/\mathbb{Q})$ contains 4 elements, the identity, σ, τ and $\sigma\tau$, where $\sigma(i) = i, \sigma(\sqrt{3}) = -\sqrt{3}, \tau(i) = -i, \tau(\sqrt{3}) = \sqrt{3}$ and $\sigma\tau(i) = -i, \sigma\tau(\sqrt{3}) = -\sqrt{3}$, and that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i)/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. On the elements α and β , those four elements act as follows:

$$\sigma(\alpha) = e^{-(i\pi/3)}, \sigma(\beta) = \beta, \quad \tau(\alpha) = e^{-(i\pi/3)}, \sigma(\beta) = -\beta, \quad \sigma\tau(\alpha) = \alpha, \sigma\tau(\beta) = -\beta.$$

As for the first example, we remark that the elements $\{1, i, \sqrt{3}, i\sqrt{3}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q} . Let $z \in \mathbb{Q}(\sqrt{3}, i)$ with $z = a + bi + c\sqrt{3} + d\sqrt{3}i$. Then, as stated above, the minimal polynomial of z is of the following form, if all factors are different

$$m_{z,\mathbb{Q}} = (x-z)(x-\sigma(z))(x-\tau(z))(x-\sigma\tau(z)) = (x-z)(x-(a+bi-c\sqrt{3}-d\sqrt{3}i))(x-(a-bi+c\sqrt{3}-d\sqrt{3}i))(x-(a-bi-c\sqrt{3}+d\sqrt{3}i)).$$

We note that the element α is of the form $\alpha = \frac{1}{2} + \frac{1}{2}(i\sqrt{3})$ in the basis $\{1, i, \sqrt{3}, i\sqrt{3}\}$. Then, the minimal polynomials are of the form

$$\begin{split} m_{\alpha,\mathbb{Q}} &= (x - (0.5 + 0.5i\sqrt{3}))(x - (0.5 - 0.5i\sqrt{3})) = (x - \alpha)(x - e^{(-i\pi/3)}) \\ m_{\alpha+\beta,\mathbb{Q}} &= (x - (0.5 + i + 0.5i\sqrt{3}))(x - (0.5 + i - 0.5\sqrt{3}i))(x - (0.5 - i - 0.5\sqrt{3}i))(x - (0.5 - i + 0.5\sqrt{3}i))(x - (0.5 - i + 0.5\sqrt{3}i))(x - (0.5i - 0.5\sqrt{3}))(x - (0.5i - 0.5i\sqrt{3}))(x -$$

4. Let $\alpha = e^{(i\pi/6)}$ and $\beta = i$. We first calculate $G = \text{Gal}(\mathbb{Q}(\alpha,\beta)/\mathbb{Q})$. We remark that $\beta = \alpha^3$, and hence $\mathbb{Q}(\alpha,\beta) = \mathbb{Q}(\alpha)$. Furthermore, α is a root of the polynomial $x^6 + 1$, which decomposes as $x^6 + 1 = (x^2 + 1)(x^4 - x^2 + 1)$. The polynomial $x^2 + 1$ has two complex roots $\pm i$. The polynomial $x^4 - x^2 + 1$ has four complex roots $\alpha, \alpha^5, \alpha^7, \alpha^{11}$. Furthermore, this polynomial is irreducible over \mathbb{Q} .

Hence the minimal polynomial of α is $m_{\alpha,\mathbb{Q}} = x^4 - x^2 + 1$. Since by adjoining α to \mathbb{Q} , all roots of $m_{\alpha,\mathbb{Q}}$ are adjoined as well, we remark that $\mathbb{Q}(\alpha)$ is the splitting field of the polynomial $x^4 - x^2 + 1$ over \mathbb{Q} . By Proposition 4.6.3 (4), we get that $|G| = [\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg m_{\alpha,\mathbb{Q}} = 4$. The elements in G are the identity, τ, σ, η , where the root α gets sent to a root of $x^4 - x^2 + 1$ by every element of G. We let $\tau(\alpha) = \alpha^5, \sigma(\alpha) = \alpha^7, \eta(\alpha) = \alpha^{11}$.

The minimal polynomials are calculated as stated above by observing the action of the ele-

ments id, τ, σ, η . It follows that

$$\begin{split} m_{\alpha,\mathbb{Q}} &= (x-\alpha)(x-\tau(\alpha))(x-\sigma(\alpha))(x-\eta(\alpha)) = (x-\alpha)(x-\alpha^5)(x-\alpha^7)(x-\alpha^{11}) = x^4 - x^2 + 1 \\ m_{\alpha+\beta,\mathbb{Q}} &= m_{\alpha+\alpha^3,\mathbb{Q}} = (x-(\alpha+\alpha^3))(x-\tau(\alpha+\alpha^3))(x-\sigma(\alpha+\alpha^3))(x-\eta(\alpha+\alpha^3)) \\ &= (x-(\alpha+\alpha^3))(x-(\alpha^5+\alpha^3))(x-(\alpha^7+\alpha^9))(x-(\alpha^{11}+\alpha^9)) = x^4 + 3x^2 + 9 \\ m_{\alpha\cdot\beta,\mathbb{Q}} &= m_{\alpha^4,\mathbb{Q}} = m_{-0.5+0.5i\sqrt{3},\mathbb{Q}} = (x-\alpha^4)(x-\tau(\alpha^4))(x-\sigma(\alpha^4))(x-\eta(\alpha^4)) \\ &= (x-\alpha^4)(x-\alpha^8)(x-\alpha^4)(x-\sigma^8) = x^2 + x + 1 \\ m_{\alpha^{-1},\mathbb{Q}} &= m_{\alpha^{11},\mathbb{Q}} = (x-\alpha^{11})(x-\tau(\alpha^{11}))(x-\sigma(\alpha^{11}))(x-\eta(\alpha^{11})) \\ &= (x-\alpha^{11})(x-\alpha^7)(x-\alpha^7)(x-\alpha) = x^4 - x^2 + 1 \end{split}$$

Exercice 6. 1. As deg f = 3 one just has to verify that f does not have a root over \mathbb{Q} . So, we need to show that if a and b are non-zero relatively prime integers, then

$$(a/b)^3 + (a/b) + 1 \neq 0,$$

or equivalently

 $a^3 + ab^2 + b^3 \neq 0.$

Suppose the contrary. Then b divides a^3 and a divides b^3 . Using the relative prime assumption we obtain both a and b are plus-minus 1, but one cannot add together three numbers, each plus or minus 1 to get 0.

2. Let α , β and γ be the three roots of f in its splitting field. Assume that they are all real. Then we have

$$f = (x - \alpha)(x - \beta)(x - \gamma)$$

and hence

 $\alpha + \beta + \gamma = 0$

and

$$\alpha\beta + \alpha\gamma + \beta\gamma = a$$

From the first equation we have $\gamma = -\alpha - \beta$. Plugging this into the left side of the second equation yields

$$\alpha\beta + \alpha(-\alpha - \beta) + \beta(-\alpha - \beta) = -\alpha^2 - \beta^2 - \alpha\beta = -\frac{1}{2}(\alpha + \beta)^2 - \frac{\alpha^2}{2} - \frac{\beta^2}{2} \le 0$$

However, we assumed that a > 0. This is a contradiction.

3. As deg f = 3, and complex roots of a real polynomial come in complex conjugate pairs, f has to have a real root. Let this real root be α . Then, $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ is a degree 3 extension and additionally $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$. Hence, the other two roots of f, say β and γ , cannot be contained in $\mathbb{Q}(\alpha)$. So, every element $g \in \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ can send α only to α . However, as α generated $\mathbb{Q}(\alpha)$ this means that $g = \operatorname{id}$.

- 4. Let α , β and γ be as in the previous point. Then both β and γ are roots of $h = \frac{f}{x-\alpha} \in \mathbb{Q}(\alpha)[x]$. As this polynomial has degree 2, and β and γ are not in $\mathbb{Q}[x]$, $h = m_{\beta,\mathbb{Q}(\alpha)} = m_{\gamma,\mathbb{Q}(\alpha)}$. So, $\mathbb{Q}(\alpha, \beta, \gamma)$ has degree 2 over $\mathbb{Q}(\alpha)$. So, by the multiplicativity of the degrees of field extensions, $L = \mathbb{Q}(\alpha, \beta, \gamma)$ has degree 6 over \mathbb{Q} . Let G be the Galois group of L over \mathbb{Q} . Then, G acts faithfully on α, β and γ , which yields an embedding $G \hookrightarrow S_3$. As both have 6 elements, this is in fact an isomorphism.
- **Exercice 7.** 1. Let β be a root of f. It holds that $\beta^p \beta + \alpha = 0$. Let $\gamma \in \mathbb{F}_p \subseteq K$. Then, using Fermat's little theorem, which states that $\gamma^p = \gamma$ modulo p, it holds that over a field of characteristic p, we have

$$(\beta + \gamma)^p - (\beta + \gamma) + \alpha = \beta^p + \gamma^p - \beta - \gamma + \alpha = \beta^p + \gamma - \beta - \gamma + \alpha = \beta^p - \beta + \alpha = 0.$$

Hence all $\beta + \gamma$, where $\gamma \in \mathbb{F}_p$ are roots of f. We get p distinct roots, and as $\mathbb{F}_p \subseteq K$, by adjoining β to K, all roots are contained in $K(\beta)$ and hence $L = K(\beta)$.

Moreover, we have that $m_{\beta,K} = f$. Let $m_{\beta,K} = \prod_{\gamma \in I} (x - (\beta + \gamma) \text{ in } L[x] \text{ with } I \subset \mathbb{F}_p[x]$. Then the coefficients in front of $x^{|I|-1}$ are exactly $-\sum_{\gamma \in I(\beta+\gamma)} = |I|\beta + \sum_{\gamma \in I} \gamma$. If we suppose that |I| < p, one contradicts the fact that $\beta \notin K$. Therefore $m_{\beta,K} = f$.

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since $L = K(\beta)$, there is at most one element in G that sends the root β to the root $\beta + \gamma$, for $\gamma \in \mathbb{F}_p$. Therefore, $|G| \leq p$. There are indeed p elements in G, which are of the form σ_{γ} , with $\sigma_{\gamma}(\beta) = \beta + \gamma$ for all $k \in \mathbb{F}_p$. We get p automorphisms, and hence $G \cong \mathbb{Z}/p\mathbb{Z}$.

- 2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| = [L:K], where $L = K(\beta)$ is the splitting field of f. By the previous point, |G| = p, and hence $[K(\beta):K] = \deg m_{\beta,K} = p$. Since β is a root of f, and since its minimal polynomial is of degree p, it follows that $f \sim m_{\beta,K}$, and hence, f is irreducible over K.
- 3. Let $\frac{g}{h} \in \mathbb{F}_p(t)$ a root of $x^p x + t$. Then, $g, h \in \mathbb{F}_p[t], h \neq 0$ and it holds that

$$\left(\frac{g}{h}\right)^p - \left(\frac{g}{h}\right) + t = 0 \Leftrightarrow g^p - gh^{p-1} + th^p = 0.$$

Denote the degree of g by d_g , and the degree of h by d_h . Then, the degree of the following polynomials are

$$\deg(g^p) = pd_g, \quad \deg(gh^{p-1}) = d_g + (p-1)d_h, \quad \deg(th^p) = 1 + pd_h.$$

In order for the sum $g^p - gh^{p-1} + th^p$ to be zero, the degrees of each of the summands needs to be canceled out.

If $d_h \ge d_g$, then the degree of th^p , being $1 + pd_h$, is strictly bigger than pd_g and $d_g + (p-1)d_h$ and hence th^p can't be canceled out, and the sum of polynomials can only be zero if h = 0, but this is a contradiction to the choice of g, h.

On the other hand, if $d_g > d_h$, then nothing can cancel out g^p , which one sees by a degree comparison, and hence the sum $g^p - gh^{p-1} + th^p$ can only be zero if g = 0 and h = 0, which is a contradiction.

- 4. Let u be a root of $f: u^p u + t = 0 \Leftrightarrow u^p u = -t$, and hence $\mathbb{F}(t) \subseteq \mathbb{F}_p(u)$. With u being transcendental over \mathbb{F}_p , it follows that the splitting field is $\mathbb{F}_p(u)$. We remark that by the second part of the exercise, all roots are of the form $u + \gamma$, where $\gamma \in \mathbb{F}_p$, and hence all roots are contained in $\mathbb{F}_p(u)$.
- **Exercice 8** (Galois correspondence). 1. Let $L = \mathbb{Q}(\sqrt{7})$. We have that $[L : \mathbb{Q}] = 2$, as $\sqrt{7} \notin \mathbb{Q}$ is a root of the irreducible polynomial $x^2 7 \in \mathbb{Q}[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $x^2 7 \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition

4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 2$ and so $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$. The only subgroups of $\operatorname{Gal}(L/\mathbb{Q})$ are $\operatorname{Gal}(L/\mathbb{Q})$ and $\{\operatorname{Id}_L\}$, therefore the only sub-extensions of L are $\mathbb{Q} = L^{\operatorname{Gal}(L/\mathbb{Q})}$ and $L = L^{\{\operatorname{Id}_L\}}$.

2. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have seen in Series 9, Exercise 5.2 that $[L : \mathbb{Q}] = 4$. Now, \mathbb{Q} is a perfect field and L is the decomposition field of $(x^2 - 2)(x^2 - 3) \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 4$. Now, let $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ be such that $\sigma(\sqrt{2}) = -\sqrt{2}$ and $\sigma(\sqrt{3}) = \sqrt{3}$, respectively $\tau(\sqrt{2}) = \sqrt{2}$ and $\tau(\sqrt{3}) = -\sqrt{3}$. We see that $\sigma^2 = \tau^2 = \operatorname{Id}_L$ and that $\sigma\tau = \tau\sigma$. Therefore $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Now, $\operatorname{Gal}(L/\mathbb{Q})$ admits 3 non-trivial proper subgroups: $\langle \sigma \rangle$, $\langle \tau \rangle$ and $\langle \sigma\tau \rangle$, each isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $L^H \subseteq L$ is Galois and $[L : L^H] = |H| = 2$. Therefore, $[L^H : \mathbb{Q}] = 2$. One checks that $\mathbb{Q}(\sqrt{3}) \subseteq L^{\langle \sigma \rangle}$, as $\sigma(\sqrt{3}) = \sqrt{3}$, and, similarly, that $\mathbb{Q}(\sqrt{2}) \subseteq L^{\langle \tau \rangle}$ and $\mathbb{Q}(\sqrt{6}) \subseteq L^{\langle \sigma \tau \rangle}$, respectively. We conclude that

$$L^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{3}), \ L^{\langle \tau \rangle} = \mathbb{Q}(\sqrt{2}) \text{ and } L^{\langle \sigma \tau \rangle} = \mathbb{Q}(\sqrt{6}).$$

3. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and consider the extension chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2},\sqrt{3}) \subseteq L$$

We have that $[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt{2},\sqrt{3})][\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 8$, as $\sqrt{5} \notin \mathbb{Q}(\sqrt{2},\sqrt{3})$ is a root of the polynomial $x^2 - 5 \in \mathbb{Q}(\sqrt{2},\sqrt{3})[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $(x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 8$. Let $\sigma_1, \sigma_2, \sigma_3 \in \operatorname{Gal}(L/\mathbb{Q})$ be such that:

$$\sigma_1(\sqrt{2}) = -\sqrt{2}, \ \sigma_1(\sqrt{3}) = \sqrt{3} \text{ and } \sigma_1(\sqrt{5}) = \sqrt{5}$$

 $\sigma_2(\sqrt{2}) = \sqrt{2}, \ \sigma_2(\sqrt{3}) = -\sqrt{3} \text{ and } \sigma_2(\sqrt{5}) = \sqrt{5}$
 $\sigma_3(\sqrt{2}) = \sqrt{2}, \ \sigma_3(\sqrt{3}) = \sqrt{3} \text{ and } \sigma_3(\sqrt{5}) = -\sqrt{5}$

One shows that $\sigma_i^2 = \operatorname{Id}_L$ for all i = 1, 2, 3 and that $\sigma_i \sigma_j = \sigma_j \sigma_i$ for all $i \neq j$, therefore determining that $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. We first consider the subgroups of order 2 of $\operatorname{Gal}(L/\mathbb{Q})$. There are 7 of them and each of these is cyclic and generated by an element of $\operatorname{Gal}(L/\mathbb{Q})$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^H \subseteq L$ is Galois with $[L : L^H] = |H| = 2$. Therefore we have $[L^H : \mathbb{Q}] = 4$.

Let $H = \langle \sigma_1 \rangle$. One checks that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^H$, as $\sigma_1(\sqrt{3}) = \sqrt{3}$ and $\sigma_1(\sqrt{5}) = \sqrt{5}$. Therefore, $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^H$, where $[\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}] = 4$ and $[L^H : \mathbb{Q}] = 4$. We conclude that $L^H = \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Similarly, one shows that:

$$L^{<\sigma_2>} = \mathbb{Q}(\sqrt{2}, \sqrt{5}), \ L^{<\sigma_3>} = \mathbb{Q}(\sqrt{2}, \sqrt{3}), \ L^{<\sigma_1\sigma_2>} = \mathbb{Q}(\sqrt{6}, \sqrt{5})$$

$$L^{<\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{3},\sqrt{10}), \ L^{<\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{2},\sqrt{15}), \ L^{<\sigma_1\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{6},\sqrt{10},\sqrt{15}) = \mathbb{Q}(\sqrt{6},\sqrt{10})$$

We now consider the subgroups of order 4 of $\operatorname{Gal}(L/\mathbb{Q})$. Again, there are 7 of them and each of these is generated by two distinct elements of order 2 of $\operatorname{Gal}(L/\mathbb{Q})$ and is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^H \subseteq L$ is Galois with $[L:L^H] = |H| = 4$. Therefore we have $[L^H:\mathbb{Q}] = 2$. One shows that:

$$L^{<\sigma_1,\sigma_2>} = \mathbb{Q}(\sqrt{5}), \ L^{<\sigma_1,\sigma_3>} = \mathbb{Q}(\sqrt{3}), \ L^{<\sigma_1,\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{15}), \ L^{<\sigma_2,\sigma_3>} = \mathbb{Q}(\sqrt{2})$$
$$L^{<\sigma_2,\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{10}), \ L^{<\sigma_3,\sigma_1\sigma_2>} = \mathbb{Q}(\sqrt{6}), \ L^{<\sigma_1\sigma_2,\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{30}).$$

4. First, we note that the extension $\mathbb{Q} \subseteq E$ is Galois, as \mathbb{Q} is a perfect field and E is the splitting field of the polynomial $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$ over \mathbb{Q} . By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(E/\mathbb{Q})| = [E:\mathbb{Q}]$. We see that $t^4 - 2t^2 - 1 = (t^2 - 1 - \sqrt{2})(t^2 - 1 + \sqrt{2}) = (t - \sqrt{1 + \sqrt{2}})(t + \sqrt{1 + \sqrt{2}})(t - \sqrt{1 - \sqrt{2}})(t + \sqrt{1 - \sqrt{2}})$. Therefore $E = \mathbb{Q}(\sqrt{1 + \sqrt{2}}, \sqrt{1 - \sqrt{2}})$. Now, we have that $i = \sqrt{1 + \sqrt{2}} \cdot \sqrt{1 - \sqrt{2}} \in E$ and thus $\mathbb{Q}(\sqrt{1 + \sqrt{2}}, i) \subseteq E$. Conversely, we have $\sqrt{1 - \sqrt{2}} = i \cdot (\sqrt{1 + \sqrt{2}})^{-1} \in \mathbb{Q}(\sqrt{1 + \sqrt{2}}, i)$ and we deduce that $E = \mathbb{Q}(\sqrt{1 + \sqrt{2}}, i)$. We now consider the extension chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq E$$

Since $\sqrt{1+\sqrt{2}}$ is a root of $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$, it follows that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] \leq 4$. We have already seen that the polynomial $t^4 - 2t^2 - 1$ does not admit roots in \mathbb{Q} . We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that:

$$t^4 - 2t^2 - 1 = (t^2 + at + b)(t^2 + ct + d).$$

Then $\begin{cases} a + c = 0\\ b + ac + d = -2\\ ad + bc = 0\\ bd = -1 \end{cases}$ and so $c = -a, d = -\frac{1}{b}$ and $-a(\frac{1}{b} + b) = 0.$

- If a = 0, then c = 0 and b + d = -2. Keeping in mind that $d = -\frac{1}{b}$, it follows that $(b+1)^2 = 2$, hence $\sqrt{2} \in \mathbb{Q}$, which is a contradiction.
- If $\frac{1}{b} + b = 0$, then $b^2 + 1 = 0$ and so $i \in \mathbb{Q}$, which is a contradiction.

We have thus shown that $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$ is irreducible and therefore $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] = 4$. We remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$ and so $[E:\mathbb{Q}(\sqrt{1+\sqrt{2}})] = 2$, as $i \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $t^2 + 1 \in \mathbb{Q}(\sqrt{1+\sqrt{2}})[t]$. In conclusion, $[E:\mathbb{Q}] = 8$, hence $|\operatorname{Gal}(E/\mathbb{Q})| = 8$.

Let $\sigma, \tau \in \text{Gal}(E/\mathbb{Q})$ be such that $\sigma(\sqrt{1+\sqrt{2}}) = \sqrt{1-\sqrt{2}}$ and $\sigma(i) = -i$, respectively $\tau(\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}}$ and $\tau(i) = -i$. One checks that:

$$\sigma^{2}(\sqrt{1+\sqrt{2}}) = -\sqrt{1+\sqrt{2}}, \ \sigma^{2}(i) = i$$

$$\sigma^{3}(\sqrt{1+\sqrt{2}}) = -\sqrt{1-\sqrt{2}}, \ \sigma^{3}(i) = -i$$

$$\sigma^{4}(\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}}, \ \sigma^{4}(i) = i$$

and thus deduces that $\sigma^4 = \tau^2 = \operatorname{Id}_E$. Now $\langle \sigma \rangle$ is a subgroup of order 4 in $\operatorname{Gal}(E/\mathbb{Q})$ and $\tau \notin \langle \sigma \rangle$. We deduce that $\operatorname{Gal}(E/\mathbb{Q}) = \langle \sigma, \tau \rangle$ and, moreover, as $\sigma \tau \neq \tau \sigma$, $\operatorname{Gal}(E/\mathbb{Q})$ is non-commutative. Lastly, $\operatorname{Gal}(E/\mathbb{Q})$ admits two elements of order 2: σ^2 and τ , and we conclude that $\operatorname{Gal}(E/\mathbb{Q}) \cong D_8$.

We now determine the subgroups of $\operatorname{Gal}(E/\mathbb{Q})$. There are 5 elements of order 2 in $\operatorname{Gal}(E/\mathbb{Q})$: $\tau, \sigma^2, \tau \sigma^2, \tau \sigma$ and $\sigma \tau$, each generating a cyclic group of order 2. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^H \subseteq E$ is Galois and $[E : E^H] = |H| = 2$. Therefore, $[E^H : \mathbb{Q}] = 4$. One checks that:

$$\tau \sigma^2(\sqrt{1+\sqrt{2}}) = \tau(-\sqrt{1+\sqrt{2}}) = -\sqrt{1+\sqrt{2}} \text{ and } \tau \sigma^2(i) = -i$$

$$\tau \sigma(\sqrt{1+\sqrt{2}}) = \tau(\sqrt{1-\sqrt{2}}) = \tau(i(\sqrt{1+\sqrt{2}})^{-1}) = -\sqrt{1-\sqrt{2}} \text{ and } \tau \sigma(i) = i$$

$$\sigma \tau(\sqrt{1+\sqrt{2}}) = \sigma(\sqrt{1+\sqrt{2}}) = \sqrt{1-\sqrt{2}} \text{ and } \sigma \tau(i) = i$$

and therefore

$$\begin{aligned} \tau \sigma^2(\sqrt{2}) &= \tau \sigma^2((\sqrt{1+\sqrt{2}})^2 - 1) = (\tau \sigma^2((\sqrt{1+\sqrt{2}}))^2 - 1 = (-\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2} \\ \tau \sigma(\sqrt{1+\sqrt{2}} - \sqrt{1-\sqrt{2}}) &= \tau \sigma(\sqrt{1+\sqrt{2}}) - \tau \sigma(i(\sqrt{1+\sqrt{2}})^{-1}) = -\sqrt{1-\sqrt{2}} - \tau(-i(\sqrt{1-\sqrt{2}})^{-1}) \\ &= -\sqrt{1-\sqrt{2}} - \tau(-\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}} - \sqrt{1-\sqrt{2}} \\ \sigma \tau(\sqrt{1+\sqrt{2}} + \sqrt{1-\sqrt{2}}) &= \sqrt{1-\sqrt{2}} + \sigma \tau(i(\sqrt{1+\sqrt{2}})^{-1}) = \sqrt{1-\sqrt{2}} + \sigma(-i(\sqrt{1+\sqrt{2}})^{-1}) \\ &= \sqrt{1-\sqrt{2}} + i(\sqrt{1-\sqrt{2}})^{-1} = \sqrt{1-\sqrt{2}} + \sqrt{1+\sqrt{2}} \end{aligned}$$

The corresponding sub-extensions are

$$E^{<\tau>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}), \ E^{<\sigma^{2}>} = \mathbb{Q}(\sqrt{1-\sqrt{2}}), \ E^{<\tau\sigma^{2}>} = \mathbb{Q}(\sqrt{2},i)$$
$$E^{<\tau\sigma>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}}) \text{ and } E^{<\sigma\tau>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}).$$

Lastly, $\operatorname{Gal}(E/\mathbb{Q})$ admits 3 subgroups of order 4, one of which is cyclic, $\langle \sigma \rangle$, and the other two are isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\langle \tau, \sigma^2 \rangle$ and $\langle \tau\sigma, \sigma^2 \rangle$.Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^H \subseteq E$ is Galois and $[E:E^H] = |H| = 4$. Therefore, $[E^H:\mathbb{Q}] = 2$. One checks that:

$$\begin{aligned} \sigma(i\sqrt{2}) &= -i\sigma(\sqrt{2}) = -i\sigma((\sqrt{1+\sqrt{2}})^2 - 1) = -i(\sqrt{1-\sqrt{2}})^2 - 1) = i\sqrt{2} \\ \begin{cases} \tau(\sqrt{2}) &= \tau(\sqrt{1+\sqrt{2}})^2 - 1)(=\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2} \\ \sigma^2(\sqrt{2}) &= \sigma^2((\sqrt{1+\sqrt{2}})^2 - 1) = (-\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2} \\ \tau\sigma(i) &= \tau(-i) = i \text{ and } \sigma^2(i) = i \end{aligned}$$

The corresponding sub-extensions are:

$$E^{\langle \sigma \rangle} = \mathbb{Q}(i\sqrt{2}), \ E^{\langle \tau, \sigma^2 \rangle} = \mathbb{Q}(\sqrt{2}) \text{ and } E^{\langle \tau \sigma, \sigma^2 \rangle} = \mathbb{Q}(i).$$

Exercice 9.

Let G be a finite group and let |G| = n. By Cayley's Theorem, we know that we can embed G as a subgroup of S_n .

Now, consider the ring $F = \mathbb{Q}[x_1, \ldots, x_n]$ and for each $\sigma \in G$ define:

$$\phi_{\sigma}: F \to F$$
 by $\phi_{\sigma}(x_i) = x_{\sigma(i)}$ for all $1 \le i \le n$.

One shows that ϕ_{σ} is a ring homomorphism for all $\sigma \in G$. Moreover, we have that $\phi_{\sigma} \circ \phi_{\sigma^{-1}} = \phi_{\sigma^{-1}} \circ \phi_{\sigma} = \operatorname{Id}_{F}$, hence ϕ_{σ} is invertible for all $\sigma \in G$ with inverse $\phi_{\sigma}^{-1} = \phi_{\sigma^{-1}}$.

Let $E = \mathbb{Q}(x_1, \ldots, x_n)$ be the field of fractions of F. Then $\phi_{\sigma} : F \to E$ is an injective ring homomorphism, as it is the composition of two injective ring homomorphisms. We now apply the universal property of the fraction field, to determine that:

$$\phi_{\sigma}: E \to E$$
, where $\phi_{\sigma}(x_i) = x_{\sigma(i)}$ for all $1 \le i \le n$

is a field homomorphism. Now, one checks that, in fact, ϕ_{σ} is a Q-automorphism of E.

Let $H = \{\phi_{\sigma} | \sigma \in G\}$ be a subset of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Since $\phi_{\sigma_1} \circ \phi_{\sigma_2} = \phi_{\sigma_1\sigma_2}$ for all $\sigma_1, \sigma_2 \in G$, it follows that H is a subgroup of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Moreover, we have that $H \cong G$, hence H is a finite group. We now apply Theorem 4.6.12 to E and H to deduce that $[E : E^H] = |H| = |\operatorname{Gal}(E/E^H)|$, hence $E^H \subseteq E$ is Galois, see Corollary 4.6.13. We conclude that $\operatorname{Gal}(E/E^H) = H \cong G$.

Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut montrer que tout groupe fini est réalisé comme un groupe de Galois d'une extension de $\mathbb{C}(t)$.

- Avec de la géométrie algébrique, on voit que les extensions finies de C(t) correspondent à des morphismes de courbes algébriques X → P¹_C tel que si ont enlève un nombre fini de points à P¹_C, le morphisme devient un revêtement au sens topologique.
- 2. $\mathbb{P}^1_{\mathbb{C}}$ privé d'un nombre fini de points est le plan complexe \mathbb{C} privé d'un nombre fini de points. Par la topologie algébrique, on sait que $\pi_1(\mathbb{C} \setminus \{p_1, \ldots, p_n\}) \cong F_n$ le groupe libre sur *n*-générateurs. On sait également par la théorie des revêtements, comme tout groupe fini G admet une surjection $F_n \to G$ pour un certain n, qu'il existe un revêtement fini de $\mathbb{C} \setminus \{p_1, \ldots, p_n\}$ avec groupe de Galois égal à G.
- 3. En retournant à la géométrie algébrique, on obtient alors un morphisme de *courbes algébriques* $X \to \mathbb{P}^1_{\mathbb{C}}$ avec groupe de Galois G et donc une extension de $\mathbb{C}(t)$ avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage à suivre des cours de géométrie algébrique et de topologie algébrique, et/ou à faire des projets dans ces domaines.

Exercice 10.

Remarquons que

$$\left(X^n - \left(\frac{\sqrt{t}+1}{\sqrt{t}-1}\right)\right) \left(X^n - \left(\frac{\sqrt{t}-1}{\sqrt{t}+1}\right)\right) = X^{2n} - 2\left(\frac{t+1}{t-1}\right)X^n + 1.$$

Notons que $\mathbb{C}(\sqrt{t}) \to \mathbb{C}(\sqrt{t})$ qui envoie $\sqrt{t} \mapsto \frac{\sqrt{t+1}}{\sqrt{t-1}}$ et $\sqrt{t} \mapsto \frac{\sqrt{t-1}}{\sqrt{t+1}}$ sont des automorphismes. Comme $X^n - \sqrt{t}$ est irréductible par Einsenstein, il suit que les deux polynômes en facteur ci-dessus sont irréductibles. On voit alors que l'extension

$$\mathbb{C}(t) \subset \mathbb{C}(\sqrt{t}) \subset \mathbb{C}\left(\sqrt[n]{\frac{\sqrt{t}+1}{\sqrt{t}-1}}\right)$$

est de degré 2n. Notons $x := \sqrt[n]{\frac{\sqrt{t+1}}{\sqrt{t-1}}}$. Les racines de $X^{2n} - 2\left(\frac{t+1}{t-1}\right)X^n + 1$ sont

$$x, \xi_n x, \dots, \xi_n^{n-1} x, \frac{1}{x}, \xi_n \frac{1}{x}, \dots, \xi_n^{n-1} \frac{1}{x},$$

où ξ_n est une racine primitive *n*-ième de l'unité. Dès lors $\mathbb{C}\left(\sqrt[n]{\frac{\sqrt{t+1}}{\sqrt{t-1}}}\right)$ est le corps de décomposition $X^{2n} - 2\left(\frac{t+1}{t-1}\right)X^n + 1.$

Notons $\sigma \in \operatorname{Gal}(L_n/\mathbb{C}(t))$ l'automorphisme tel que $\sigma(x) = \xi_n x$ pour ξ_n . Notons τ pour l'automorphisme tel que $\tau(x) = \frac{1}{x}$. Comme les racines de $X^{2n} - 2\left(\frac{t+1}{t-1}\right)X^n + 1$ sont de la forme $x^{\epsilon}\xi_n^j$ pour $\epsilon = 1, -1$ et $j = 0, \ldots, n-1$, on voit que tout élément du groupe de Galois est de la forme $\tau^{\epsilon}\sigma^j$. Comme $\sigma^n = \operatorname{id}, \tau^2 = \operatorname{id}$ et $\tau\sigma\tau\sigma = \operatorname{id}$ on a dès lors un morphisme surjectif

$$D_{2n} \to \operatorname{Gal}(L_n/\mathbb{C}(t))$$

qui est un isomorphisme par cardinalité.