Exercice 1. (a) As $\alpha \notin K^{p}$ it follows that for all $\beta \in K$ we have $\beta^{p} \neq \alpha$ and thus $x^{p}-\alpha \in K[x]$ does not admit roots in K. Let F be a decomposition field of $x^{p}-\alpha$ over K and let $\beta \in F$ be a root of this polynomial. We have that:

$$
x^{p}-\alpha=x^{p}-\beta^{p}=(x-\beta)^{p} \text { in } F[x] .
$$

Let $m_{\beta, K}(x) \in K[x]$ denote the minimal polynomial of β over K. As β is a root of $x^{p}-\alpha$, it follows that $m_{\beta, K}(x) \mid x^{p}-\alpha=(x-\beta)^{p}$. Therefore there exists some $i, 1 \leq i \leq p$, such that $m_{\beta, K}(x)=(x-\beta)^{i}$. Now, as $m_{\beta, K}(x) \in K[x]$ we have that:

$$
(x-\beta)^{i}=\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} x^{i-j} \beta^{j}=x^{i}-i \beta x^{i-1}+\cdots+(-1)^{i} \beta^{i} \in K[x] .
$$

It follows that $-i \beta=0$ and so $i=p$. Therefore $m_{\beta, K}(x)=(x-\beta)^{p}=x^{p}-\alpha$ and we conclude that $x^{p}-\alpha \in K[x]$ is irreducible.
(b) To show that L is a field, we will show that the polynomial $y^{2}-x(x-1)(x+1) \in\left(\mathbb{F}_{p}(x)\right)[y]$ is irreducible. As $y^{2}-x(x-1)(x+1)$ is a unitary polynomial, it is primitive and so, by Gauss III, it is irreducible in $\left(\mathbb{F}_{p}(x)\right)[y]$ if and only if it is irreducible in $\left(\mathbb{F}_{p}[x]\right)[y]$. Now, $x \in \mathbb{F}_{p}[x]$ is irreducible and we use Eisenstein with " $p=x$ " (here p denotes the irreducible in Eisenstein criterion) to deduce that $y^{2}-x(x-1)(x+1)$ is irreducible in $\left(\mathbb{F}_{p}[x]\right)[y]$.
(c) By Proposition 4.5.7, as $\operatorname{char}(L)=p$, we have that L is perfect if and only if $L^{p}=L$. We will show that $x \notin L^{p}$.

Assume by contradiction that $x \in L^{p}$. Then, there exists $f \in L$ such that $x=f^{p}$. It follows that $f \in L$ is a root of the polynomial $t^{p}-x \in \mathbb{F}_{p}(x)[t]$. As $x \in \mathbb{F}_{p}(x)$ is not a $p^{t h}$ power, see Exercice 3, it follows that the polynomial $t^{p}-x$ is irreducible in $\left(\mathbb{F}_{p}(x)\right)[t]$, see item (a). This shows that $m_{f, \mathbb{F}_{p}(x)}(t) \sim t^{p}-x \in\left(\mathbb{F}_{p}(x)\right)[t]$.
Consider the chain of extensions:

$$
\mathbb{F}_{p}(x) \subseteq\left(\mathbb{F}_{p}(x)\right)(f) \subseteq L
$$

and we have $\left[\left(\mathbb{F}_{p}(x)\right)(f): \mathbb{F}_{p}(x)\right]\left[\left[L: \mathbb{F}_{p}(x)\right]\right.$. But $\left[L: \mathbb{F}_{p}(x)\right]=2$ and $\left[\left(\mathbb{F}_{p}(x)\right)(f): \mathbb{F}_{p}(x)\right]=p$, where $p \neq 2$. We have arrived at a contradiction.
(d) We have that $L=\left(\mathbb{F}_{2}(x)\right)[y] /\left(y^{2}+x(x+1)^{2}\right)$. Note that the polynomial $y^{2}+x(x+1)^{2} \in$ $\left(\mathbb{F}_{2}(x)\right)[y]$ admits $\sqrt{x}(x+1)$ as a double root and so it is irreducible in $\left(\mathbb{F}_{2}(x)\right)[y]$. Now, by Proposition 4.2.25, it follows that $L=\left(\mathbb{F}_{2}(x)\right)(\sqrt{x}(x+1))=\left(\mathbb{F}_{2}(x)\right)(\sqrt{x})=\mathbb{F}_{2}(\sqrt{x})$. For the last equality, note that $\mathbb{F}_{2}(\sqrt{x}) \subseteq\left(\mathbb{F}_{2}(x)\right)(\sqrt{x})$ and, as $\mathbb{F}_{2}(x) \subseteq \mathbb{F}_{2}(\sqrt{x})$, we have $\left(\mathbb{F}_{2}(x)\right)(\sqrt{x}) \subseteq\left(\mathbb{F}_{2}(\sqrt{x})\right)(\sqrt{x})=\mathbb{F}_{2}(\sqrt{x})$.
As char $(L)=2$, it follows that L is perfect if and only if $L^{2}=L$, see Proposition 4.5.7. But

$$
\begin{aligned}
L^{2} & =\left\{f(\sqrt{x})^{2} \mid f(\sqrt{x}) \in L\right\}=\left\{\left.\left(\frac{f_{1}(\sqrt{x})}{f_{2}(\sqrt{x})}\right)^{2} \right\rvert\, f_{1}(\sqrt{x}), f_{2}(\sqrt{x}) \in \mathbb{F}_{2}[\sqrt{x}], f_{2}(\sqrt{x}) \neq 0\right\} \\
& =\left\{\left.\frac{f_{1}(x)}{f_{2}(x)} \right\rvert\, f_{1}(x), f_{2}(x) \in \mathbb{F}_{2}[x], f_{2}(x) \neq 0\right\}=\mathbb{F}_{2}(x)
\end{aligned}
$$

and clearly $\sqrt{x} \notin L^{2}$.

Exercice 2(a)(i) Let $\alpha \in L \backslash K$. As $\alpha^{2} \in K$, it follows that α is a root of the polynomial $x^{2}+\alpha^{2} \in$ $K[x]$ and thus $[K(\alpha): K] \leq 2$. On the other hand, we have that $[K(\alpha): K] \geq 2$, as $\alpha \notin K$, and we conclude that $[K(\alpha): K]=2$ and $K(\alpha)=L$.
(ii) The polynomial $x^{2}+\alpha^{2} \in K[x]$, where $\alpha \in L \backslash K$, admits α as a double root, hence it is irreducible in $K[x]$. Now, as this is a unitary irreducible polynomial of degree 2 and as $\alpha \notin K$, it follows that $m_{\alpha, K}(x)=x^{2}+\alpha^{2}$ and so we conclude that $\alpha \in L \backslash K$ is inseparable.
(b)(i) Let $\alpha \in L \backslash K$ be such that $\alpha^{2} \notin K$. First, we have that $[K(\alpha): K] \geq 2$ and, as $K(\alpha) \subseteq L$, it follows that $[K(\alpha): K] \leq[L: K]=2$, and so $[K(\alpha): K]=2$, hence $K(\alpha)=L$.
Secondly, as $\alpha^{2} \in K(\alpha)$ and $\alpha^{2} \notin K$, there exist $a, b \in K, a \neq 0$, such that $\alpha^{2}=a \alpha+b$. Then:

$$
\left(\frac{\alpha}{a}\right)^{2}=\left(\frac{\alpha}{a}\right)+\frac{b}{a^{2}} .
$$

Set $\beta=\frac{\alpha}{a} \in K(\alpha)$ and $c=\frac{b}{a^{2}} \in K$. We have that $K(\alpha)=K\left(\frac{\alpha}{a}\right)=K(\beta)$ and so $L=K(\beta)$. Moreover, β is a root of the unitary polynomial $x^{2}+x+c \in K[x]$ and, as $[K(\beta): K]=2$, we conclude that $m_{\beta, K}(x)=x^{2}+x+c$.
(ii) Note that a polynomial of the form $x^{2}+x+c$ is always separable as the derivative is $1 \neq 0$. So, β is automatically separable. Now $\beta+1 \in K(\beta)$ is a root of $m_{\beta, K}(x)$, as $(\beta+1)^{2}+(\beta+1)+c=$ $\beta^{2}+\beta+c=0$, and we conclude that $\tau: K(\beta) \rightarrow K(\beta)$ given by $\tau(\beta)=\beta+1$ is an automorphism of $K(\beta)$. Then, by Proposition 4.6.3.4 we have that $|\operatorname{Gal}(K(\beta) / K)|=2$.
(iii) Note that $K(\beta)^{\langle\tau\rangle}=K$ by theorem 4.6.13. If $\gamma \in L \backslash K$ then $\tau(\gamma) \neq \gamma$ and by proposition 4.6.3.(3), we get that the minimal polynomial of γ is $(t-\gamma)(t-\tau(\gamma))$. Therefore $K \subset L$ is separable.

Exercice 3.

We use the same techniques as in Example 4.6.5, and denote $G=\operatorname{Gal}(K / \mathbb{Q})=\operatorname{Aut}_{\mathbb{Q}}(K)$.

- Let $K=\mathbb{Q}(i)$. The irreducible polynomial $x^{2}+1 \in \mathbb{Q}[x]$ has two distinct roots in $\mathbb{Q}(i)$, and they are i and $-i$. From Prop 4.6.3(1), it follows that every element in G sends i to i or to $-i$. By Prop 4.6.3(2), there is at most one element in G for each possibility. By Prop 4.6.3(4), it holds that $|\operatorname{Gal}(K / \mathbb{Q})|=[\mathbb{Q}(i): \mathbb{Q}]=2$, hence $\operatorname{Gal}(K / \mathbb{Q})=\left\{\operatorname{id}_{\mathbb{Q}(i)}, \sigma\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$, where (the identity sends i to i, and) σ sends i to $-i$. As σ is \mathbb{Q}-linear, we have that $\sigma(a+i b)=a-i b$, the conjugation.
- Let $K=\mathbb{Q}(\sqrt{7})$. Using the same steps as above, considering the irreducible polynomial $x^{2}-7 \in \mathbb{Q}[x]$, we get that $\operatorname{Gal}(K / \mathbb{Q})=\left\{\operatorname{id}_{\mathbb{Q}(\sqrt{7})}, \sigma\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$, where (the identity sends $\sqrt{7}$ to $\sqrt{7}$, and) σ sends $\sqrt{7}$ to $-\sqrt{7}$. As σ is \mathbb{Q}-linear, we have that $\sigma(a+\sqrt{7} b)=a-\sqrt{7} b$.
- Let $K=\mathbb{Q}(\sqrt[3]{2})$. The irreducible polynomial $x^{3}-2 \in \mathbb{Q}[x]$ has only one root in $\mathbb{Q}(\sqrt[3]{2})$. As by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial by an element in G, and for each such possibility there is at most one element in G by Prop 4.6.3(2), we conclude that $G=\left\{\operatorname{id}_{\mathbb{Q}(\sqrt[3]{2})}\right\}$ is trivial.
- Let $K=\mathbb{Q}\left(\omega^{2}\right)$, where $\omega=e^{2 i \pi / 3}$. The irreducible polynomial $x^{2}+x+1 \in \mathbb{Q}[x]$ has two roots in $\mathbb{Q}(\omega)$, which are ω and ω^{2}. As for the first and second example, it follows that G is cyclic of order two, consisting of the identity and σ, which sends ω to ω^{2}. We have in fact $K=\mathbb{Q}(i \sqrt{3})$, and one can argue as in the first two points.

Exercice 4.

We have the following extension tower:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}) .
$$

The extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is Galois, as \mathbb{Q} is a perfect field and $\mathbb{Q}(\sqrt{2})$ is the decomposition field of the polynomial $x^{2}-2 \in \mathbb{Q}[x]$, see Theorem 4.6.15. Similarly, the extension $\mathbb{Q}(\sqrt{2}) \subseteq$ $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is Galois, as $\mathbb{Q}(\sqrt{2})$ is perfect and $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is the decomposition field of the polynomial $x^{2}-1-\sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.

We now consider the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$. We note that this extension is of degree 4 . We also note by develloping

$$
\left(x^{2}-(1+\sqrt{2})\right)\left(x^{2}-(1-\sqrt{2})\right)
$$

that $\sqrt{1+\sqrt{2}}$ is a root of the polynomial $x^{4}-2 x^{2}-1 \in \mathbb{Q}[x]$, hence $m \sqrt{1+\sqrt{2}, \mathbb{Q}}(x)=x^{4}-2 x^{2}-1$ by the degree because $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}]=4$. Moreover, the other roots of $x^{4}-2 x^{2}-1$ are $-\sqrt{1+\sqrt{2}}$ and $\pm \sqrt{1-\sqrt{2}}$. Now, we remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$, therefore $\pm \sqrt{1-\sqrt{2}} \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}}) / \mathbb{Q})$. Then $\sigma(\sqrt{1}+\sqrt{2}) \in \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $m \sqrt{1+\sqrt{2}, \mathbb{Q}}(x)$ and thus $\sigma(\sqrt{1}+\sqrt{2})= \pm \sqrt{1+\sqrt{2}}$, see Proposition 4.6 .3 (c). It follows that $|\operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}}) / \mathbb{Q})|=2$ and we conclude, using Corollary 4.6.13, that the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is not Galois.

Exercice 5.

In the following solutions, we use the same technique to find the minimal polynomials as in Example 4.6.11. With Proposition 4.6 .10 , it holds that for an element $z \in \mathbb{Q}(\alpha, \beta)$, the minimal polynomial is $m_{z, \mathbb{Q}}=\prod_{z^{\prime}}\left(x-z^{\prime}\right)$, where z^{\prime} is a Galois conjugate of z.

1. As in Example 4.6 .4 (3), we see that $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. The elements in G are the identity, σ, with $\sigma(\sqrt{3})=\sqrt{3}$ and $\sigma(\sqrt{7})=-\sqrt{7}, \tau$ with $\tau(\sqrt{3})=-\sqrt{3}$ and $\tau(\sqrt{7})=\sqrt{7}$, and $\tau \sigma$, with $\tau \sigma(\sqrt{3})=-\sqrt{3}$ and $\tau \sigma(\sqrt{7})=-\sqrt{7}$.
The elements $\{1, \sqrt{3}, \sqrt{7}, \sqrt{3} \sqrt{7}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, \sqrt{7})$ over \mathbb{Q}. Now let $z \in \mathbb{Q}(\alpha, \beta)$, with $z=a+b \sqrt{3}+c \sqrt{7}+d \sqrt{3} \sqrt{7}$. The conjugates of z are

$$
z, \quad a+b \sqrt{3}-c \sqrt{7}-d \sqrt{3} \sqrt{7}, \quad a-b \sqrt{3}+c \sqrt{7}-d \sqrt{3} \sqrt{7}, \quad a-b \sqrt{3}-c \sqrt{7}+d \sqrt{3} \sqrt{7}
$$

As noted above, the minimal polynomial is

$$
m_{z, \mathbb{Q}}=(x-z)(x-(a+b \sqrt{3}-c \sqrt{7}-d \sqrt{3} \sqrt{7}))(x-(a-b \sqrt{3}+c \sqrt{7}-d \sqrt{3} \sqrt{7}))(x-(a-b \sqrt{3}-c \sqrt{7}+d \sqrt{3} \sqrt{7})),
$$

if all factors are different. Hence the minimal polynomials of the elements $\sqrt{3}, \sqrt{3}+\sqrt{7}, \sqrt{3}$. $\sqrt{7}, \sqrt{3}^{-1}$ are

$$
\begin{aligned}
& m_{\sqrt{3}, \mathbb{Q}}=x^{2}-3 \\
& m_{\sqrt{3}+\sqrt{7}, \mathbb{Q}}=(x-\sqrt{3}-\sqrt{7})(x-\sqrt{3}+\sqrt{7})(x+\sqrt{3}-\sqrt{7})(x+\sqrt{3}+\sqrt{7}) \\
& m_{\sqrt{3} \cdot \sqrt{7}, \mathbb{Q}}=(x-\sqrt{3} \sqrt{7})(x+\sqrt{3} \sqrt{7}) \\
& m_{\sqrt{3}^{-1}, \mathbb{Q}}=x^{2}-\frac{1}{3} .
\end{aligned}
$$

2. We note that since $\beta=-1 \in \mathbb{Q}$, it holds that $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\alpha)$. α is a root of the polynomial $x^{3}+1$. The other two roots are -1 , and $e^{-2 i \pi / 3}=\bar{\alpha}$. Since one of the roots is contained in \mathbb{Q}, over which every element of the Galois group acts as the identity we get by Prop 4.6 .3 (1) that every element of the Galois group G either sends α to α, or to $\bar{\alpha}$. By (b), there exists at most one element for each possibility. Hence $|G| \leq 2$. There are exactly two automorphisms, one being the identity, and the other acting on α by sending α to $\bar{\alpha}$. Therefore, $G \cong \mathbb{Z} / 2 \mathbb{Z}$.
Again, we calculate the minimal polynomial of an element $z=(a+b \alpha) \in \mathbb{Q}(\alpha)$ as above. Its
minimal polynomial is $m_{z, \mathbb{Q}}=(x-a-b \alpha)(x-a-b \bar{\alpha})$, if the factors are different. We get

$$
\begin{aligned}
& m_{\alpha, \mathbb{Q}}=(x-\alpha)(x-\bar{\alpha})=x^{2}-x+1 \\
& m_{\alpha+\beta, \mathbb{Q}}=x^{2}+x+1 \\
& m_{\alpha \cdot \beta, \mathbb{Q}}=x^{2}+x+1 \\
& m_{\alpha^{-1}, \mathbb{Q}}=x^{2}-x+1
\end{aligned}
$$

3. Let $\alpha=e^{(\pi i / 3)}$ and $\beta=i$. Since $\alpha=\cos (\pi / 3)+i \sin (\pi / 3)=\frac{1}{2}+\frac{1}{2} i \sqrt{3}$, it follows that $\alpha \in \mathbb{Q}(i \sqrt{3})$, and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(i \sqrt{3})$. With $i \sqrt{3}=2 \alpha-1$, it follows that $i \sqrt{3} \in \mathbb{Q}(\alpha)$, and $\mathbb{Q}(i \sqrt{3}) \subseteq \mathbb{Q}(\alpha)$. With this, it follows that $\mathbb{Q}(\alpha)=\mathbb{Q}(i \sqrt{3})$. Furthermore, $\mathbb{Q}(\alpha, \beta)=$ $\mathbb{Q}(i \sqrt{3}, i)=\mathbb{Q}(\sqrt{3}, i)$. As in Example 4.6 .4 (c), we see that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i) / \mathbb{Q})$ contains 4 elements, the identity, σ, τ and $\sigma \tau$, where $\sigma(i)=i, \sigma(\sqrt{3})=-\sqrt{3}, \tau(i)=-i, \tau(\sqrt{3})=\sqrt{3}$ and $\sigma \tau(i)=-i, \sigma \tau(\sqrt{3})=-\sqrt{3}$, and that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. On the elements α and β, those four elements act as follows:

$$
\sigma(\alpha)=e^{-(i \pi / 3)}, \sigma(\beta)=\beta, \quad \tau(\alpha)=e^{-(i \pi / 3)}, \sigma(\beta)=-\beta, \quad \sigma \tau(\alpha)=\alpha, \sigma \tau(\beta)=-\beta .
$$

As for the first example, we remark that the elements $\{1, i, \sqrt{3}, i \sqrt{3}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}. Let $z \in \mathbb{Q}(\sqrt{3}, i)$ with $z=a+b i+c \sqrt{3}+d \sqrt{3} i$. Then, as stated above, the minimal polynomial of z is of the following form, if all factors are different

$$
\begin{aligned}
m_{z, \mathbb{Q}} & =(x-z)(x-\sigma(z))(x-\tau(z))(x-\sigma \tau(z)) \\
& =(x-z)(x-(a+b i-c \sqrt{3}-d \sqrt{3} i))(x-(a-b i+c \sqrt{3}-d \sqrt{3} i))(x-(a-b i-c \sqrt{3}+d \sqrt{3} i)) .
\end{aligned}
$$

We note that the element α is of the form $\alpha=\frac{1}{2}+\frac{1}{2}(i \sqrt{3})$ in the basis $\{1, i, \sqrt{3}, i \sqrt{3}\}$. Then, the minimal polynomials are of the form

$$
\begin{aligned}
& m_{\alpha, \mathbb{Q}}=(x-(0.5+0.5 i \sqrt{3}))(x-(0.5-0.5 i \sqrt{3}))=(x-\alpha)\left(x-e^{(-i \pi / 3)}\right) \\
& m_{\alpha+\beta, \mathbb{Q}}=(x-(0.5+i+0.5 i \sqrt{3}))(x-(0.5+i-0.5 \sqrt{3} i))(x-(0.5-i-0.5 \sqrt{3} i))(x-(0.5-i+0.5 \sqrt{3} i)) \\
& m_{\alpha \cdot \beta, \mathbb{Q}}=(x-(0.5 i-0.5 \sqrt{3}))(x-(0.5 i+0.5 \sqrt{3}))(x-(-0.5 i-0.5 \sqrt{3}))(x-(-0.5 i+0.5 \sqrt{3})) \\
& m_{\alpha^{-1}, \mathbb{Q}}=m_{e(-i \pi / 3), \mathbb{Q}}=m_{0.5-0.5 i \sqrt{3}, \mathbb{Q}}=(x-(0.5-0.5 i \sqrt{3}))(x-(0.5+0.5 i \sqrt{3}))
\end{aligned}
$$

4. Let $\alpha=e^{(i \pi / 6)}$ and $\beta=i$. We first calculate $G=\operatorname{Gal}(\mathbb{Q}(\alpha, \beta) / \mathbb{Q})$. We remark that $\beta=$ α^{3}, and hence $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\alpha)$. Furthermore, α is a root of the polynomial $x^{6}+1$, which decomposes as $x^{6}+1=\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)$. The polynomial $x^{2}+1$ has two complex roots $\pm i$. The polynomial $x^{4}-x^{2}+1$ has four complex roots $\alpha, \alpha^{5}, \alpha^{7}, \alpha^{11}$. Furthermore, this polynomial is irreducible over \mathbb{Q}.
Hence the minimal polynomial of α is $m_{\alpha, \mathbb{Q}}=x^{4}-x^{2}+1$. Since by adjoining α to \mathbb{Q}, all roots of $m_{\alpha, \mathbb{Q}}$ are adjoined as well, we remark that $\mathbb{Q}(\alpha)$ is the splitting field of the polynomial $x^{4}-x^{2}+1$ over \mathbb{Q}. By Proposition 4.6.3 (4), we get that $|G|=[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} m_{\alpha, \mathbb{Q}}=4$. The elements in G are the identity, τ, σ, η, where the root α gets sent to a root of $x^{4}-x^{2}+1$ by every element of G. We let $\tau(\alpha)=\alpha^{5}, \sigma(\alpha)=\alpha^{7}, \eta(\alpha)=\alpha^{11}$.
The minimal polynomials are calculated as stated above by observing the action of the ele-
ments $i d, \tau, \sigma, \eta$. It follows that

$$
\begin{aligned}
& m_{\alpha, \mathbb{Q}}=(x-\alpha)(x-\tau(\alpha))(x-\sigma(\alpha))(x-\eta(\alpha))=(x-\alpha)\left(x-\alpha^{5}\right)\left(x-\alpha^{7}\right)\left(x-\alpha^{11}\right)=x^{4}-x^{2}+1 \\
& m_{\alpha+\beta, \mathbb{Q}}=m_{\alpha+\alpha^{3}, \mathbb{Q}}=\left(x-\left(\alpha+\alpha^{3}\right)\right)\left(x-\tau\left(\alpha+\alpha^{3}\right)\right)\left(x-\sigma\left(\alpha+\alpha^{3}\right)\right)\left(x-\eta\left(\alpha+\alpha^{3}\right)\right) \\
& \quad=\left(x-\left(\alpha+\alpha^{3}\right)\right)\left(x-\left(\alpha^{5}+\alpha^{3}\right)\right)\left(x-\left(\alpha^{7}+\alpha^{9}\right)\right)\left(x-\left(\alpha^{11}+\alpha^{9}\right)\right)=x^{4}+3 x^{2}+9 \\
& m_{\alpha \cdot \beta, \mathbb{Q}}=m_{\alpha^{4}, \mathbb{Q}}=m_{-0.5+0.5 i \sqrt{3}, \mathbb{Q}}=\left(x-\alpha^{4}\right)\left(x-\tau\left(\alpha^{4}\right)\right)\left(x-\sigma\left(\alpha^{4}\right)\right)\left(x-\eta\left(\alpha^{4}\right)\right) \\
& \quad=\left(x-\alpha^{4}\right)\left(x-\alpha^{8}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{8}\right)=x^{2}+x+1 \\
& m_{\alpha^{-1}, \mathbb{Q}}=m_{\alpha^{11}, \mathbb{Q}}=\left(x-\alpha^{11}\right)\left(x-\tau\left(\alpha^{11}\right)\right)\left(x-\sigma\left(\alpha^{11}\right)\right)\left(x-\eta\left(\alpha^{11}\right)\right) \\
& \quad=\left(x-\alpha^{11}\right)\left(x-\alpha^{7}\right)\left(x-\alpha^{7}\right)(x-\alpha)=x^{4}-x^{2}+1
\end{aligned}
$$

Exercice 6. 1. As $\operatorname{deg} f=3$ one just has to verify that f does not have a root over \mathbb{Q}. So, we need to show that if a and b are non-zero relatively prime integers, then

$$
(a / b)^{3}+(a / b)+1 \neq 0,
$$

or equivalently

$$
a^{3}+a b^{2}+b^{3} \neq 0 .
$$

Suppose the contrary. Then b divides a^{3} and a divides b^{3}. Using the relative prime assumption we obtain both a and b are plus-minus 1 , but one cannot add together three numbers, each plus or minus 1 to get 0 .
2. Let α, β and γ be the three roots of f in its splitting field. Assume that they are all real. Then we have

$$
f=(x-\alpha)(x-\beta)(x-\gamma)
$$

and hence

$$
\alpha+\beta+\gamma=0
$$

and

$$
\alpha \beta+\alpha \gamma+\beta \gamma=a
$$

From the first equation we have $\gamma=-\alpha-\beta$. Plugging this into the left side of the second equation yields

$$
\alpha \beta+\alpha(-\alpha-\beta)+\beta(-\alpha-\beta)=-\alpha^{2}-\beta^{2}-\alpha \beta=-\frac{1}{2}(\alpha+\beta)^{2}-\frac{\alpha^{2}}{2}-\frac{\beta^{2}}{2} \leq 0
$$

However, we assumed that $a>0$. This is a contradiction.
3. As $\operatorname{deg} f=3$, and complex roots of a real polynomial come in complex conjugate pairs, f has to have a real root. Let this real root be α. Then, $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ is a degree 3 extension and additionally $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$. Hence, the other two roots of f, say β and γ, cannot be contained in $\mathbb{Q}(\alpha)$. So, every element $g \in \operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ can send α only to α. However, as α generated $\mathbb{Q}(\alpha)$ this means that $g=\mathrm{id}$.
4. Let α, β and γ be as in the previous point. Then both β and γ are roots of $h=\frac{f}{x-\alpha} \in \mathbb{Q}(\alpha)[x]$. As this polynomial has degree 2 , and β and γ are not in $\mathbb{Q}[x], h=m_{\beta, \mathbb{Q}(\alpha)}=m_{\gamma, \mathbb{Q}(\alpha)}$. So, $\mathbb{Q}(\alpha, \beta, \gamma)$ has degree 2 over $\mathbb{Q}(\alpha)$. So, by the multiplicativity of the degrees of field extensions, $L=\mathbb{Q}(\alpha, \beta, \gamma)$ has degree 6 over \mathbb{Q}. Let G be the Galois group of L over \mathbb{Q}. Then, G acts faithfully on α, β and γ, which yields an embedding $G \hookrightarrow S_{3}$. As both have 6 elements, this is in fact an isomorphism.

Exercice 7. 1. Let β be a root of f. It holds that $\beta^{p}-\beta+\alpha=0$. Let $\gamma \in \mathbb{F}_{p} \subseteq K$. Then, using Fermat's little theorem, which states that $\gamma^{p}=\gamma$ modulo p, it holds that over a field of characteristic p, we have

$$
(\beta+\gamma)^{p}-(\beta+\gamma)+\alpha=\beta^{p}+\gamma^{p}-\beta-\gamma+\alpha=\beta^{p}+\gamma-\beta-\gamma+\alpha=\beta^{p}-\beta+\alpha=0 .
$$

Hence all $\beta+\gamma$, where $\gamma \in \mathbb{F}_{p}$ are roots of f. We get p distinct roots, and as $\mathbb{F}_{p} \subseteq K$, by adjoining β to K, all roots are contained in $K(\beta)$ and hence $L=K(\beta)$.
Moreover, we have that $m_{\beta, K}=f$. Let $m_{\beta, K}=\prod_{\gamma \in I}\left(x-(\beta+\gamma)\right.$ in $L[x]$ with $I \subset \mathbb{F}_{p}[x]$. Then the coefficients in front of $x^{|I|-1}$ are exactly $-\sum_{\gamma \in I(\beta+\gamma)}=|I| \beta+\sum_{\gamma \in I} \gamma$. If we suppose that $|I|<p$, one contradicts the fact that $\beta \notin K$. Therefore $m_{\beta, K}=f$.
We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since $L=K(\beta)$, there is at most one element in G that sends the root β to the root $\beta+\gamma$, for $\gamma \in \mathbb{F}_{p}$. Therefore, $|G| \leq p$. There are indeed p elements in G, which are of the form σ_{γ}, with $\sigma_{\gamma}(\beta)=\beta+\gamma$ for all $k \in \mathbb{F}_{p}$. We get p automorphisms, and hence $G \cong \mathbb{Z} / p \mathbb{Z}$.
2. The fact that f is irreducible over K follows from Prop 4.6 .3 (d), which states that $|G|=$ [$L: K$], where $L=K(\beta)$ is the splitting field of f. By the previous point, $|G|=p$, and hence $[K(\beta): K]=\operatorname{deg} m_{\beta, K}=p$. Since β is a root of f, and since its minimal polynomial is of degree p, it follows that $f \sim m_{\beta, K}$, and hence, f is irreducible over K.
3. Let $\frac{g}{h} \in \mathbb{F}_{p}(t)$ a root of $x^{p}-x+t$. Then, $g, h \in \mathbb{F}_{p}[t], h \neq 0$ and it holds that

$$
\left(\frac{g}{h}\right)^{p}-\left(\frac{g}{h}\right)+t=0 \Leftrightarrow g^{p}-g h^{p-1}+t h^{p}=0 .
$$

Denote the degree of g by d_{g}, and the degree of h by d_{h}. Then, the degree of the following polynomials are

$$
\operatorname{deg}\left(g^{p}\right)=p d_{g}, \quad \operatorname{deg}\left(g h^{p-1}\right)=d_{g}+(p-1) d_{h}, \quad \operatorname{deg}\left(t h^{p}\right)=1+p d_{h}
$$

In order for the sum $g^{p}-g h^{p-1}+t h^{p}$ to be zero, the degrees of each of the summands needs to be canceled out.
If $d_{h} \geq d_{g}$, then the degree of $t h^{p}$, being $1+p d_{h}$, is strictly bigger than $p d_{g}$ and $d_{g}+(p-1) d_{h}$ and hence $t h^{p}$ can't be canceled out, and the sum of polynomials can only be zero if $h=0$, but this is a contradiction to the choice of g, h.
On the other hand, if $d_{g}>d_{h}$, then nothing can cancel out g^{p}, which one sees by a degree comparison, and hence the sum $g^{p}-g h^{p-1}+t h^{p}$ can only be zero if $g=0$ and $h=0$, which is a contradiction.
4. Let u be a root of $f: u^{p}-u+t=0 \Leftarrow u^{p}-u=-t$, and hence $\mathbb{F}(t) \subseteq \mathbb{F}_{p}(u)$. With u being transcendental over \mathbb{F}_{p}, it follows that the splitting field is $\mathbb{F}_{p}(u)$. We remark that by the second part of the exercise, all roots are of the form $u+\gamma$, where $\gamma \in \mathbb{F}_{p}$, and hence all roots are contained in $\mathbb{F}_{p}(u)$.
Exercice 8 (Galois correspondence). 1. Let $L=\mathbb{Q}(\sqrt{7})$. We have that $[L: \mathbb{Q}]=2$, as $\sqrt{7} \notin \mathbb{Q}$ is a root of the irreducible polynomial $x^{2}-7 \in \mathbb{Q}[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $x^{2}-7 \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition
4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=2$ and so $\operatorname{Gal}(L / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$. The only subgroups of $\operatorname{Gal}(L / \mathbb{Q})$ are $\operatorname{Gal}(L / \mathbb{Q})$ and $\left\{\operatorname{Id}_{L}\right\}$, therefore the only sub-extensions of L are $\mathbb{Q}=L^{\operatorname{Gal}(L / \mathbb{Q})}$ and $L=L^{\left\{\operatorname{Id}_{L}\right\}}$.
2. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have seen in Series 9, Exercise 5.2 that $[L: \mathbb{Q}]=4$. Now, \mathbb{Q} is a perfect field and L is the decomposition field of $\left(x^{2}-2\right)\left(x^{2}-3\right) \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=4$. Now, let $\sigma, \tau \in \operatorname{Gal}(L / \mathbb{Q})$ be such that $\sigma(\sqrt{2})=-\sqrt{2}$ and $\sigma(\sqrt{3})=\sqrt{3}$, respectively $\tau(\sqrt{2})=\sqrt{2}$ and $\tau(\sqrt{3})=-\sqrt{3}$. We see that $\sigma^{2}=\tau^{2}=\operatorname{Id}_{L}$ and that $\sigma \tau=\tau \sigma$. Therefore $\operatorname{Gal}(L / \mathbb{Q})=<$ $\sigma, \tau>\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Now, $\operatorname{Gal}(L / \mathbb{Q})$ admits 3 non-trivial proper subgroups: $<\sigma>$, $<\tau>$ and $<\sigma \tau>$, each isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $L^{H} \subseteq L$ is Galois and $\left[L: L^{H}\right]=|H|=2$. Therefore, $\left[L^{H}: \mathbb{Q}\right]=2$. One checks that $\mathbb{Q}(\sqrt{3}) \subseteq L^{<\sigma\rangle}$, as $\sigma(\sqrt{3})=\sqrt{3}$, and, similarly, that $\mathbb{Q}(\sqrt{2}) \subseteq L^{<\tau>}$ and $\mathbb{Q}(\sqrt{6}) \subseteq L^{<\sigma \tau>}$, respectively. We conclude that

$$
L^{<\sigma>}=\mathbb{Q}(\sqrt{3}), L^{<\tau>}=\mathbb{Q}(\sqrt{2}) \text { and } L^{<\sigma \tau>}=\mathbb{Q}(\sqrt{6})
$$

3. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and consider the extension chain:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq L
$$

We have that $[L: \mathbb{Q}]=[L: \mathbb{Q}(\sqrt{2}, \sqrt{3})][\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=8$, as $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a root of the polynomial $x^{2}-5 \in \mathbb{Q}(\sqrt{2}, \sqrt{3})[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right) \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=8$. Let $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \operatorname{Gal}(L / \mathbb{Q})$ be such that:

$$
\begin{aligned}
& \sigma_{1}(\sqrt{2})=-\sqrt{2}, \sigma_{1}(\sqrt{3})=\sqrt{3} \text { and } \sigma_{1}(\sqrt{5})=\sqrt{5} \\
& \sigma_{2}(\sqrt{2})=\sqrt{2}, \sigma_{2}(\sqrt{3})=-\sqrt{3} \text { and } \sigma_{2}(\sqrt{5})=\sqrt{5} \\
& \sigma_{3}(\sqrt{2})=\sqrt{2}, \sigma_{3}(\sqrt{3})=\sqrt{3} \text { and } \sigma_{3}(\sqrt{5})=-\sqrt{5}
\end{aligned}
$$

One shows that $\sigma_{i}^{2}=\operatorname{Id}_{L}$ for all $i=1,2,3$ and that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for all $i \neq j$, therefore determining that $\operatorname{Gal}(L / \mathbb{Q})=<\sigma_{1}, \sigma_{2}, \sigma_{3}>\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We first consider the subgroups of order 2 of $\operatorname{Gal}(L / \mathbb{Q})$. There are 7 of them and each of these is cyclic and generated by an element of $\operatorname{Gal}(L / \mathbb{Q})$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^{H} \subseteq L$ is Galois with $\left[L: L^{H}\right]=|H|=2$. Therefore we have $\left[L^{H}: \mathbb{Q}\right]=4$.
Let $H=<\sigma_{1}>$. One checks that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^{H}$, as $\sigma_{1}(\sqrt{3})=\sqrt{3}$ and $\sigma_{1}(\sqrt{5})=\sqrt{5}$. Therefore, $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^{H}$, where $[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}]=4$ and $\left[L^{H}: \mathbb{Q}\right]=4$. We conclude that $L^{H}=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. Similarly, one shows that:

$$
\begin{gathered}
L^{<\sigma_{2}>}=\mathbb{Q}(\sqrt{2}, \sqrt{5}), L^{<\sigma_{3}>}=\mathbb{Q}(\sqrt{2}, \sqrt{3}), L^{<\sigma_{1} \sigma_{2}>}=\mathbb{Q}(\sqrt{6}, \sqrt{5}) \\
L^{<\sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{3}, \sqrt{10}), L^{<\sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{2}, \sqrt{15}), L^{<\sigma_{1} \sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})=\mathbb{Q}(\sqrt{6}, \sqrt{10})
\end{gathered}
$$

We now consider the subgroups of order 4 of $\operatorname{Gal}(L / \mathbb{Q})$. Again, there are 7 of them and each of these is generated by two distinct elements of order 2 of $\operatorname{Gal}(L / \mathbb{Q})$ and is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Let H be one of these subgroups. We apply Theorem 4.6 .18 to determine that $L^{H} \subseteq L$ is Galois with $\left[L: L^{H}\right]=|H|=4$. Therefore we have $\left[L^{H}: \mathbb{Q}\right]=2$. One shows that:

$$
\begin{gathered}
L^{<\sigma_{1}, \sigma_{2}>}=\mathbb{Q}(\sqrt{5}), L^{<\sigma_{1}, \sigma_{3}>}=\mathbb{Q}(\sqrt{3}), L^{<\sigma_{1}, \sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{15}), L^{<\sigma_{2}, \sigma_{3}>}=\mathbb{Q}(\sqrt{2}) \\
L^{<\sigma_{2}, \sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{10}), L^{<\sigma_{3}, \sigma_{1} \sigma_{2}>}=\mathbb{Q}(\sqrt{6}), L^{<\sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{30})
\end{gathered}
$$

4. First, we note that the extension $\mathbb{Q} \subseteq E$ is Galois, as \mathbb{Q} is a perfect field and E is the splitting field of the polynomial $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$ over \mathbb{Q}. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(E / \mathbb{Q})|=[E: \mathbb{Q}]$. We see that $t^{4}-2 t^{2}-1=\left(t^{2}-1-\sqrt{2}\right)\left(t^{2}-1+\sqrt{2}\right)=(t-\sqrt{1+\sqrt{2}})(t+$ $\sqrt{1+\sqrt{2}})(t-\sqrt{1-\sqrt{2}})(t+\sqrt{1-\sqrt{2}})$. Therefore $E=\mathbb{Q}(\sqrt{1+\sqrt{2}}, \sqrt{1-\sqrt{2}})$. Now, we have that $i=\sqrt{1+\sqrt{2}} \cdot \sqrt{1-\sqrt{2}} \in E$ and thus $\mathbb{Q}(\sqrt{1+\sqrt{2}}, i) \subseteq E$. Conversely, we have $\sqrt{1-\sqrt{2}}=i \cdot(\sqrt{1+\sqrt{2}})^{-1} \in \mathbb{Q}(\sqrt{1+\sqrt{2}}, i)$ and we deduce that $E=\mathbb{Q}(\sqrt{1+\sqrt{2}}, i)$. We now consider the extension chain:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq E
$$

Since $\sqrt{1+\sqrt{2}}$ is a root of $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$, it follows that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}] \leq 4$. We have already seen that the polynomial $t^{4}-2 t^{2}-1$ does not admit roots in \mathbb{Q}. We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that:

$$
t^{4}-2 t^{2}-1=\left(t^{2}+a t+b\right)\left(t^{2}+c t+d\right)
$$

Then $\left\{\begin{array}{l}a+c=0 \\ b+a c+d=-2 \\ a d+b c=0 \\ b d=-1\end{array}\right.$ and so $c=-a, d=-\frac{1}{b}$ and $-a\left(\frac{1}{b}+b\right)=0$.

- If $a=0$, then $c=0$ and $b+d=-2$. Keeping in mind that $d=-\frac{1}{b}$, it follows that $(b+1)^{2}=2$, hence $\sqrt{2} \in \mathbb{Q}$, which is a contradiction.
- If $\frac{1}{b}+b=0$, then $b^{2}+1=0$ and so $i \in \mathbb{Q}$, which is a contradiction.

We have thus shown that $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$ is irreducible and therefore $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}]=4$. We remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$ and so $[E: \mathbb{Q}(\sqrt{1+\sqrt{2}})]=2$, as $i \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $t^{2}+1 \in \mathbb{Q}(\sqrt{1+\sqrt{2}})[t]$. In conclusion, $[E: \mathbb{Q}]=8$, hence $|\operatorname{Gal}(E / \mathbb{Q})|=8$.
Let $\sigma, \tau \in \operatorname{Gal}(E / \mathbb{Q})$ be such that $\sigma(\sqrt{1+\sqrt{2}})=\sqrt{1-\sqrt{2}}$ and $\sigma(i)=-i$, respectively $\tau(\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}$ and $\tau(i)=-i$. One checks that:

$$
\begin{gathered}
\sigma^{2}(\sqrt{1+\sqrt{2}})=-\sqrt{1+\sqrt{2}}, \sigma^{2}(i)=i \\
\sigma^{3}(\sqrt{1+\sqrt{2}})=-\sqrt{1-\sqrt{2}}, \sigma^{3}(i)=-i \\
\sigma^{4}(\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}, \quad \sigma^{4}(i)=i
\end{gathered}
$$

and thus deduces that $\sigma^{4}=\tau^{2}=\operatorname{Id}_{E}$. Now $<\sigma>$ is a subgroup of order 4 in $\operatorname{Gal}(E / \mathbb{Q})$ and $\tau \notin<\sigma>$. We deduce that $\operatorname{Gal}(E / \mathbb{Q})=<\sigma, \tau>$ and, moreover, as $\sigma \tau \neq \tau \sigma, \operatorname{Gal}(E / \mathbb{Q})$ is non-commutative. Lastly, $\operatorname{Gal}(E / \mathbb{Q})$ admits two elements of order 2: σ^{2} and τ, and we conclude that $\operatorname{Gal}(E / \mathbb{Q}) \cong D_{8}$.
We now determine the subgroups of $\operatorname{Gal}(E / \mathbb{Q})$. There are 5 elements of order 2 in $\operatorname{Gal}(E / \mathbb{Q})$: $\tau, \sigma^{2}, \tau \sigma^{2}, \tau \sigma$ and $\sigma \tau$, each generating a cyclic group of order 2. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^{H} \subseteq E$ is Galois and $[E$: $\left.E^{H}\right]=|H|=2$. Therefore, $\left[E^{H}: \mathbb{Q}\right]=4$. One checks that:

$$
\begin{gathered}
\tau \sigma^{2}(\sqrt{1+\sqrt{2}})=\tau(-\sqrt{1+\sqrt{2}})=-\sqrt{1+\sqrt{2}} \text { and } \tau \sigma^{2}(i)=-i \\
\tau \sigma(\sqrt{1+\sqrt{2}})=\tau(\sqrt{1-\sqrt{2}})=\tau\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=-\sqrt{1-\sqrt{2}} \text { and } \tau \sigma(i)=i
\end{gathered}
$$

$$
\sigma \tau(\sqrt{1+\sqrt{2}})=\sigma(\sqrt{1+\sqrt{2}})=\sqrt{1-\sqrt{2}} \text { and } \sigma \tau(i)=i
$$

and therefore

$$
\left.\begin{array}{l}
\tau \sigma^{2}(\sqrt{2})=\tau \sigma^{2}\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=\left(\tau \sigma^{2}((\sqrt{1+\sqrt{2}}))^{2}-1=(-\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2}\right. \\
\tau \sigma(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}})
\end{array}=\tau \sigma(\sqrt{1+\sqrt{2}})-\tau \sigma\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=-\sqrt{1-\sqrt{2}}-\tau\left(-i(\sqrt{1-\sqrt{2}})^{-1}\right)\right) ~ \begin{aligned}
\sigma \tau(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}) & =\sqrt{1-\sqrt{2}}+\sigma \tau\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=\sqrt{1-\sqrt{2}}+\sigma\left(-i(\sqrt{1+\sqrt{2}})^{-1}\right) \\
& =-\sqrt{1-\sqrt{2}}-\tau(-\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}} \\
& =\sqrt{1-\sqrt{2}}+i(\sqrt{1-\sqrt{2}})^{-1}=\sqrt{1-\sqrt{2}}+\sqrt{1+\sqrt{2}}
\end{aligned}
$$

The corresponding sub-extensions are

$$
\begin{gathered}
E^{<\tau>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}), E^{<\sigma^{2}>}=\mathbb{Q}(\sqrt{1-\sqrt{2}}), E^{<\tau \sigma^{2}>}=\mathbb{Q}(\sqrt{2}, i) \\
E^{<\tau \sigma>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}}) \text { and } E^{<\sigma \tau>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}) .
\end{gathered}
$$

Lastly, $\operatorname{Gal}(E / \mathbb{Q})$ admits 3 subgroups of order 4 , one of which is cyclic, $<\sigma>$, and the other two are isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z},<\tau, \sigma^{2}>$ and $<\tau \sigma, \sigma^{2}>$.Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^{H} \subseteq E$ is Galois and $\left[E: E^{H}\right]=|H|=4$. Therefore, $\left[E^{H}: \mathbb{Q}\right]=2$. One checks that:

$$
\begin{gathered}
\left.\sigma(i \sqrt{2})=-i \sigma(\sqrt{2})=-i \sigma\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=-i(\sqrt{1-\sqrt{2}})^{2}-1\right)=i \sqrt{2} \\
\left\{\begin{array}{l}
\left.\tau(\sqrt{2})=\tau(\sqrt{1+\sqrt{2}})^{2}-1\right)(=\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2} \\
\sigma^{2}(\sqrt{2})=\sigma^{2}\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=(-\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2} \\
\tau \sigma(i)=\tau(-i)=i \text { and } \sigma^{2}(i)=i
\end{array}\right.
\end{gathered}
$$

The corresponding sub-extensions are:

$$
E^{<\sigma>}=\mathbb{Q}(i \sqrt{2}), E^{<\tau, \sigma^{2}>}=\mathbb{Q}(\sqrt{2}) \text { and } E^{<\tau \sigma, \sigma^{2}>}=\mathbb{Q}(i) .
$$

Exercice 9.

Let G be a finite group and let $|G|=n$. By Cayley's Theorem, we know that we can embed G as a subgroup of S_{n}.

Now, consider the ring $F=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and for each $\sigma \in G$ define:

$$
\phi_{\sigma}: F \rightarrow F \text { by } \phi_{\sigma}\left(x_{i}\right)=x_{\sigma(i)} \text { for all } 1 \leq i \leq n .
$$

One shows that ϕ_{σ} is a ring homomorphism for all $\sigma \in G$. Moreover, we have that $\phi_{\sigma} \circ \phi_{\sigma^{-1}}=$ $\phi_{\sigma^{-1}} \circ \phi_{\sigma}=\mathrm{Id}_{F}$, hence ϕ_{σ} is invertible for all $\sigma \in G$ with inverse $\phi_{\sigma}^{-1}=\phi_{\sigma^{-1}}$.

Let $E=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be the field of fractions of F. Then $\phi_{\sigma}: F \rightarrow E$ is an injective ring homomorhism, as it is the composition of two injective ring homomorphisms. We now apply the universal property of the fraction field, to determine that:

$$
\phi_{\sigma}: E \rightarrow E, \text { where } \phi_{\sigma}\left(x_{i}\right)=x_{\sigma(i)} \text { for all } 1 \leq i \leq n
$$

is a field homomorphism. Now, one checks that, in fact, ϕ_{σ} is a \mathbb{Q}-automorphism of E.
Let $H=\left\{\phi_{\sigma} \mid \sigma \in G\right\}$ be a subset of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Since $\phi_{\sigma_{1}} \circ \phi_{\sigma_{2}}=\phi_{\sigma_{1} \sigma_{2}}$ for all $\sigma_{1}, \sigma_{2} \in G$, it follows that H is a subgroup of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Moreover, we have that $H \cong G$, hence H is a finite group. We now apply Theorem 4.6 .12 to E and H to deduce that $\left[E: E^{H}\right]=|H|=\left|\operatorname{Gal}\left(E / E^{H}\right)\right|$, hence $E^{H} \subseteq E$ is Galois, see Corollary 4.6.13. We conclude that $\operatorname{Gal}\left(E / E^{H}\right)=H \cong G$.
Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut montrer que tout groupe fini est réalisé comme un groupe de Galois d'une extension de $\mathbb{C}(t)$.

1. Avec de la géométrie algébrique, on voit que les extensions finies de $\mathbb{C}(t)$ correspondent à des morphismes de courbes algébriques $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ tel que si ont enlève un nombre fini de points à $\mathbb{P}_{\mathbb{C}}^{1}$, le morphisme devient un revêtement au sens topologique.
2. $\mathbb{P}_{\mathbb{C}}^{1}$ privé d'un nombre fini de points est le plan complexe \mathbb{C} privé d'un nombre fini de points. Par la topologie algébrique, on sait que $\pi_{1}\left(\mathbb{C} \backslash\left\{p_{1}, \ldots, p_{n}\right\}\right) \cong F_{n}$ le groupe libre sur n générateurs. On sait également par la théorie des revêtements, comme tout groupe fini G admet une surjection $F_{n} \rightarrow G$ pour un certain n, qu'il existe un revêtement fini de $\mathbb{C} \backslash$ $\left\{p_{1}, \ldots, p_{n}\right\}$ avec groupe de Galois égal à G.
3. En retournant à la géométrie algébrique, on obtient alors un morphisme de courbes algébriques $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ avec groupe de Galois G et donc une extension de $\mathbb{C}(t)$ avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage à suivre des cours de géométrie algébrique et de topologie algébrique, et/ou à faire des projets dans ces domaines.

Exercice 10.

Remarquons que

$$
\left(X^{n}-\left(\frac{\sqrt{t}+1}{\sqrt{t}-1}\right)\right)\left(X^{n}-\left(\frac{\sqrt{t}-1}{\sqrt{t}+1}\right)\right)=X^{2 n}-2\left(\frac{t+1}{t-1}\right) X^{n}+1
$$

Notons que $\mathbb{C}(\sqrt{t}) \rightarrow \mathbb{C}(\sqrt{t})$ qui envoie $\sqrt{t} \mapsto \frac{\sqrt{t}+1}{\sqrt{t}-1}$ et $\sqrt{t} \mapsto \frac{\sqrt{t}-1}{\sqrt{t}+1}$ sont des automorphismes. Comme $X^{n}-\sqrt{t}$ est irréductible par Einsenstein, il suit que les deux polynômes en facteur ci-dessus sont irréductibles. On voit alors que l'extension

$$
\mathbb{C}(t) \subset \mathbb{C}(\sqrt{t}) \subset \mathbb{C}\left(\sqrt[n]{\frac{\sqrt{t}+1}{\sqrt{t}-1}}\right)
$$

est de degré $2 n$. Notons $x:=\sqrt[n]{\frac{\sqrt{t}+1}{\sqrt{t}-1}}$. Les racines de $X^{2 n}-2\left(\frac{t+1}{t-1}\right) X^{n}+1$ sont

$$
x, \xi_{n} x, \ldots, \xi_{n}^{n-1} x, \frac{1}{x}, \xi_{n} \frac{1}{x}, \ldots, \xi_{n}^{n-1} \frac{1}{x}
$$

où ξ_{n} est une racine primitive n-ième de l'unité. Dès lors $\mathbb{C}\left(\sqrt[n]{\frac{\sqrt{t}+1}{\sqrt{t}-1}}\right)$ est le corps de décomposition $X^{2 n}-2\left(\frac{t+1}{t-1}\right) X^{n}+1$.

Notons $\sigma \in \operatorname{Gal}\left(L_{n} / \mathbb{C}(t)\right)$ l'automorphisme tel que $\sigma(x)=\xi_{n} x$ pour ξ_{n}. Notons τ pour l'automorphisme tel que $\tau(x)=\frac{1}{x}$. Comme les racines de $X^{2 n}-2\left(\frac{t+1}{t-1}\right) X^{n}+1$ sont de la forme $x^{\epsilon} \xi_{n}^{j}$ pour $\epsilon=1,-1$ et $j=0, \ldots, n-1$, on voit que tout élément du groupe de Galois est de la forme $\tau^{\epsilon} \sigma^{j}$. Comme $\sigma^{n}=\mathrm{id}, \tau^{2}=\mathrm{id}$ et $\tau \sigma \tau \sigma=\mathrm{id}$ on a dès lors un morphisme surjectif

$$
D_{2 n} \rightarrow \operatorname{Gal}\left(L_{n} / \mathbb{C}(t)\right)
$$

qui est un isomorphisme par cardinalité.

