Towards self-reproducing robots

What you will learn in this class

- Types of self-reproduction
- Self-assembly by mobile robots
- Programmable self-assembly
- 2D multi-cellular robots: *in silico* evolution and hardware assembly
- 3D multi-cellular robots: hardware design and assembly
- Artificial ontogenesis in silico
- In silico evolution, in vivo self-assembly of multicellular organisms
- In vivo kinematic self-replication

Self-reproduction by growth

Organisms self-reproduce by a mechanism of cell division, specialization, and migration

Early development of Drosophila [Slack 2006]

Self-reproduction by self-assembly

At sub-cellular level, self-replication happens by self-assembly of existing materials (see first lecture on "From DNA to Proteins")

Von Neumann (1966), *Theory of self-reproducing automata*, A.E. Burks (Editor), University of Illinois Press

"Self-reproducing robots by self-assembly are possible if a reservoir of specialized cells is available in the environment"

He considered a floating environment with millions of elementary "cells" of approximately 20 types:

- sensor cell
- muscle cell
- cutting cell
- fusing cell
- neuron-like cell
- . .

2 requirements for self-assembly

A population of diverse cells

Intrinsic and/or extrinsic energy potential

The impact of morphological diversity

Penrose, L. S. & Penrose, R. Nature 179, 1183 (1957).

Self-assembling Kilobots

Rubenstein et al. (2014) Science

Self-assembly Algorithm

Self-Organizing Systems Research Group

Harvard University School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering

Cells in Multicellular Organisms stiffness, specialization, connectivity

Cyanobacteria

Myxobacteria

Cell diversity

Softness affects folding angle

Germann et al (2014) Soft Robotics

Initial

Soft cells

Programmable Self-Assembly

MIT PhD thesis

Programmable self-assembly in silico

Programmable self-assembly in hardware

Germann et al (2014) *Soft Robotics*

Adding muscle cells

1cm

Velcro

Soft Modular Worm

From 2D to 3D: Tensegrity robotic cells

3D multicellular worm

-Servo2

0,5

0.6

0.7

A contracting module

-Servo1

0,2

60 40

-20

-40

E

0,3

0,4

Time [s]

Time [s]

0,1

(q) Worm head travel

0

3D printed hole-pin latching

Pin

—Servo3

0.8

D. Zappetti, S. Mintchev, J. Shintake, e D. Floreano (2017) «Bio-inspired Tensegrity Soft Modular Robots», in Biomimetic and Biohybrid Systems, 497–508

Different types of tensegrity cells

Multicellular tensegrity robots

Artificial Ontogeny (Bongard and Pfeifer, 2001)

Evolutionary developmental process to synthesize artificial multicellular "creatures"

Xenobots: Evolved in silico, self-assembled in vivo

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2020) A Scalable Pipeline for Designing Reconfigurable Organisms." *Proceedings of the National Academy of Sciences* 117(4) : 1853–59. <u>https://doi.org/10.1073/pnas.1910837117</u>.

A scalable pipeline for designing reconfigurable organisms.

Sam Kriegman, Douglas Blackiston, Michael Levin, Josh Bongard University of Vermont, Tufts University.

Manufacturing of self-assembling organism

Caution: insertion of cardiac cells within Xenobot is not shown in the video

Assembly of Xenobots by frog cells

Spontaneous motion of frog cells assemble clusters of ectodermal stem cells that become Xenobots

...but assembled Xenobots do not self-replicate

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2021) Kinematic Self-Replication in Reconfigurable Organisms. *Proceedings of the National Academy of Sciences* 118(49) <u>https://doi.org/10.1073/pnas.2112672118</u>.

Kinematic self-replication of Xenobots

In silico evolution designs Xenobots that self-replicate for more generations

Kriegman, Sam, Douglas Blackiston, Michael Levin, and Josh Bongard (2021) Kinematic Self-Replication in Reconfigurable Organisms. *Proceedings of the National Academy of Sciences* 118(49) <u>https://doi.org/10.1073/pnas.2112672118</u>.

Kinematic self replication in reconfigurable organisms.

Sam Kriegman^{1,2} Douglas Blackiston^{1,2} Michael Levin^{1,2} & Josh Bongard^{3,*}

¹ Allen Discovery Center, Tufts University ² Wyss Institute for Biologically Inspired Engineering, Harvard University ³ Department of Computer Science, University of Vermont * jbongard@uvm.edu

Project deadline

31-May-2023	 Every team should submit the following files in a zip file on Moodle: 1. Their best robot (.txt file) 2. All evolution files (scenario.js, configuration files, arenas, etc) 3. Their presentation (PDF and pptx) should be uploaded in a zip file. Submission portal located in the "1 June 2023" section on Moodle.
1-June-2023	Group presentations, BS160 All group members must attend

Presentation Schedule (1st June, BS160)

Group	From	То					
1	09:15	09:25	AM				
2	09:25	09:35	AM				
3	09:35	09:45	AM				
4	09:45	09:55	AM				
Break	09:55	10:10	AM AM AM AM				
5	10:10	10:20					
6	10:20	10:30					
7	10:30	10:40					
8	10:40	10:50	AM				
Break	10:50	11:05	AM				
9	11:05	11:15	AM				
10	11:15	11:25	AM				
11	11:25	11:35	AM				
12	11:35	11:45	AM				
Presentation (8 mins) + questions (2 mins)							

Note:

- Grand Challenge Presentation template.pptx on Moodle in the "1 June 2023" section.
- Your presentation should include a video of the physical robot that you have built (the performance will not be graded).

Grading Criteria

		Dario Floreano				Euan Judd						
		Method	Clarity	Completeness	Grade	Notes	Method	Clarity	Completeness	Grade	Notes	Average Grade
Teams	1											
	2											
	3											
	4											
	5											
	6											
	7											
	8											
	9											
	10											
	11											
	12											
Metho	d [50%]											
Clarity	[25%]											

Completeness [25%]

Method: Description of the problem, fitness function and how this relates to the problem, and description of the parameters that were used. It also includes your creativity (i.e. for the scenario) and your scientific approach.

Clarity: How clear and concise are the slides and the description of your project.

Completeness: Evidence of investigating the effects of changing parameters, different fitness functions, generalisability of solution, and whether both the brain and the body have been evolved.