
René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch

Embedded Systems

 "System On Programmable Chip"
Programmable interface design

 Parallel port Design
Odometry - PWM

RB - A2009
1

http://moodle.msengineering.ch/course/view.php?id=12
http://moodle.msengineering.ch/course/view.php?id=12

Design of a Parallel Port

Example of a development methodology of a
programmable parallel port interface

• Processor Interface
• Processor view : registers model
• Interface design
• Realization in VHDL
• Test Bench and simulation

5
RB - A2009

Goal

Programmable Parallel Input/Output
Interfaces are very common on a SOPC.
They allow access to simple bits of
information between the processor and the
external world.
The control is done by the processor
through registers in the programmable
interface.
Each register is seen at a specific address.

6
RB - A2009

Typical SOPC

7
RB - A2009

NIOS II
cpu core

SDRAM
controler

Tristate
Bridge

Av
al

on
 S

w
itc

h
Fa

br
ic

UART

TIMER

LCD Display
Driver

Ethernet
Interface

Altera FPGA

PIO

LCD Screen

Buttons
+ LEDs

Ethernet
MAC + PHY

SDRAM
Memory

TxD
RxDClock

Reset

Flash
Memory

Avalon slave interface

Avalon master interface

PIO: Parallel Input Output

Processor

Goal

The objective here is to design one interface
for an Avalon bus as a slave module.
The main characteristics of the module are:
 Bidirectional Port,
 Programmable Direction for each bit
 Special features for modifying the port bits

 Realization in VHDL for FPGA (that can be
simulate and synthesizable)

8
RB - A2009

Avalon Parallel Port, main features

• Realization of the parallel Port on Avalon
Bus with:
8 bits port
Programmable direction for each bit
Write direct to PortPar
Function Setbits
Function Clrbits

9
RB - A2009

Processor Interface –
 programmable logic

• We have a softcore processor on an
Avalon bus in a FPGA.

• In the FPGA a specific parallel port is to be
developed, it has to be added on the
Avalon with SOPC Builder in the Quartus
II environment.

10
RB - A2009

Avalon Slave bus Cycles

• Read and Write Access
• Synchronous
• Separate data bus for read and write

access

11
RB - A2009

Slave Avalon Bus Specifications

The Avalon bus provide signals to the module:

• nReset Initialization
• Clk Clock
• Address(n..0) Address, the address is a register

 number address.
• ChipSelect Selection of this module
• Read Read access
• ReadData[7..0] Data to provide by the module in read

 access
• Write Write access
• WriteData[7..0] Data send to the module in write

 access

12
RB - A2009

Parallel Port Accesses (1)

 8 bits bidirectional Port,
 Each pin can be specified as input or output
 The direction is specified in RegDir, (0 : input, 1 : output)

 The direction can be read back

 The state of the port at the pin level can be read
in : RegPin

13
RB - A2009

Parallel Port Accesses (2)

 The state value is memorized in a register:
 RegPort  Port Register
 To update this register, 3 accesses are available :

1. RegPort : Direct memorized value : '0' or '1'
2. RegSet : The bits specified at '1' level during the write

cycle at this address, are saved as '1' in the register,
the others bits are not changed

3. RegClr : The bits specified at '1' level during the write
cycle at this address, are saved as '0' in the register,
the others bits are not changed

 This register can be read back

14
RB - A2009

Parallel Port External interface

ParPort is the signal name for the pins.
If the direction is output:
The value memorized in RegPort is

Outputted.
If the direction is input:
The output value is 'Z': High impedance (tri-

stated)

In both case the value at the pin interface
can be read with an access at RegPin

15
RB - A2009

Parallel Port Module on Avalon

16
RB - A2009

ParallelPort

ParPort[7..0]

FPGA Pins

Address[2..0]
ChipSelect

Read
ReadData[7..0]

Write
WriteData[7..0]

Avalon

Clk

nReset

RegDir

RegPin

RegPort

RegSet

RegClr

7 0

I/O Addresses in the module, access map

Adresses in
the module

Write
Registers

DataWrite
[7..0]

Read
Registers

DataRead
[7..0]

0 RegDir  iRegDir RegDir iRegDir 

1 - Don't care RegPin ParPort 

2 RegPort  iRegPort RegPort iRegPort 

3 RegSet  iRegPort - 0x00
4 RegClr  iRegPort - 0x00
5 - Don't care - 0x00
6 - Don't care - 0x00
7 - Don't care - 0x00

17
RB - A2009

Registers selection

18
RB - A2009

To do :
 VHDL entity & architecture

LIBRARY

19
RB - A2009

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

Entity

ENTITY ParallelPort IS
 PORT(
 -- Avalon interfaces signals
 Clk : IN std_logic;
 nReset : IN std_logic;

 Address : IN std_logic_vector (2 DOWNTO 0);
 ChipSelect : IN std_logic;

 Read : IN std_logic;
 Write : IN std_logic;

 ReadData : OUT std_logic_vector (7 DOWNTO 0);
 WriteData : IN std_logic_vector (7 DOWNTO 0);

 -- Parallel Port external interface
 ParPort : INOUT std_logic_vector (7 DOWNTO 0)
);
End ParallelPort;

20
RB - A2009

Architecture: Internal signals

 -- signals for register access

 signal iRegDir : std_logic_vector (7 DOWNTO 0);
 signal iRegPort: std_logic_vector (7 DOWNTO 0);
 signal iRegPin : std_logic_vector (7 DOWNTO 0);

21
RB - A2009

ParallelPort Architecture, external interface

22
RB - A2009

iRegPort(i)

iRegDir(i)

ParPort (i)

iRegPin(i)

FPGA
External
world

ARCHITECTURE comp OF ParallelPort IS

… SIGNAL ...
BEGIN
 -- Parallel Port output value
 pPort:
 process(iRegDir, iRegPort)
 begin
 for i in 0 to 7 loop
 if iRegDir(i) = '1' then
 ParPort(i) <= iRegPort(i);
 else
 ParPort(i) <= 'Z';
 end if;
 end loop;
 end process pPort;

 -- Parallel Port Input value
 iRegPin <= ParPort;
-- others processes..
END comp;

Avalon write
slave, 0 wait

23
RB-A2010

ParallelPort Architecture, registers access

24
RB - A2009

-- Process Write to registers
pRegWr:

process(Clk, nReset)
begin

if nReset = '0' then
 iRegDir <= (others => '0'); -- Input by default
 …..
elsif rising_edge(Clk) then

if ChipSelect = '1' and Write = '1' then -- Write cycle
case Address(2 downto 0) is
 when "000" => iRegDir <= WriteData ;
 when "010" => iRegPort <= WriteData;
 when "011" => iRegPort <= iRegPort OR WriteData;
 when "100" => iRegPort <= iRegPort AND NOT WriteData;
 when others => null;
end case;

end if;
end if;

end process pRegWr;

Avalon slave
read, 0 wait, asynchronous peripheral

25
RB-A2010

ReadData available at
next rising edge of clk (E)

ParallelPort Architecture, registers access

-- Read Process to registers
pRegRd:

process(Clk)
begin

if rising_edge(Clk) then
 ReadData <= (others => '0'); -- default value
 if ChipSelect = '1' and Read = '1' then -- Read cycle

 case Address(2 downto 0) is
 when "000" => ReadData <= iRegDir ;
 when "001" => ReadData <= iRegPin;
 when "010" => ReadData <= iRegPort;
 when others => null;
 end case;
end if;

end if;
end process pRegRd;

26
RB - A2009

!! Synchrone: 1 wait

Test and implementation

• This module can be now be tested by simulation with a
test bench or timing stimulation  to do as exercise
 Read, Write access have to be generated to control the registers

and verify the result
• Then a new component can be created with SOPC

Builder
• It can then be integrated in a NIOSII system
• The system can be generated from SOPC
• Compiled by QuartusII after added to a schematic design
• Downloaded on a real system
• Program the NIOSII processor to access the registers

(NIOS IDE) and test the full system

27
RB - A2009

Creation in QuartusII / SOPC Builder

1. You need to create a Project for each
programmable interface you developed in
QuartusII

2. Don't use space in directory/files names
3. When you create a VHDL entity/architecture,

the name of the file is the name of the entity
4. Entity and architecture are in the same file
5. You create a new Project for the full design

28
RB - A2009

Conclusion

• Now you are able to design a specific
programmable interface for a bus for
Programmable FPGA, here it was the
Avalon

• The methodology for this kind of interface
is similar for Amba, Wishbone or others
internal bus

• The bus generation depend on the used
tools, here SOPC Builder do the job !

29
RB - A2009

30
RB - A2009

Conclusion

• You know:
The basic use of Avalon synchronous bus
The memory map model of a programmable

interface
To translate this model in VHDL
To control pins on a FPGA ('0', '1', 'Z')
To implement the interface module in a

complete system

31
RB - A2009

Others Programmables Interfaces design exemples

• PWM: Pulse Width Modulation

• Odometer: Distance / Speed measurement

32
RB - A2009

Other Programmable Interface

Pulse Width Modulation

• Generation of a continuous pulse train
• Can be used as a D/A converter

33
RB - A2009

Period

Duty

Programmable Interface … PWM

• To control a motor, a PWM module with 2
outputs can be used :
PWMa and PWMb
They are connected to a DC motor through a H-

bridge
Depending which output send the PWM signal,

the motor turn in one direction or the other.
PWMa  PWM, PWMb  Idle  Direction A
PWMa  Idle, PWMb  PWM  Direction B

34
RB - A2009

Programmable Interface … PWM

PWM Output control

35
RB - A2009

M
H-Bridge

Si…..

PWMa

PWMb

PWM

Direction PWM
selection

Polarity

Programmable Interface … PWM

36
RB - A2009

PWM

Direction

Polarity

PWMa

PWMb

Period
Duty

Polarity: Level of the Active part of the PWM
 The Idle level is the inverted value of the Polarity

Dty
Per

Dty
Per Dty

Per
Dty
Per

Programmable Interface … PWM

• We want to be able to program :
 The period of the PWM signal
 The active Time (Duty) of the PWM
 The polarity of the active time ('0') or ('1')
 Be able to enable/disable the output  a command register
 Direction is the sign of the Duty

 If the Duty is positive:
 PWMa is the PWM output, PWBb is in the Idle state

 If the Duty is negative:
 PWMb is the PWM output, PWBa is in the Idle state

 Period value is on 15 bits
 Duty is on 16 bits signed in cpl'2  real duty is the abs(RegDuty)
 The new Duty is to be used only at the end of a Period if the

PWM output is enabled

37
RB - A2009

Programmable Interface … PWM

• Propose a register map of this interface
• Create the entity in VHDL
• Implement the Architecture
• Simulate the access
• Create a component with SOPC Builder
• Integrate it in a NIOSII system

38
RB - A2009

Other Programmable Interface… Odometer

Odometer
• A 2 signals system to measure speed and

displacement
• Depending on the phase of A and B the direction

of the rotation can be determinate

39
RB - A2009

Programmable Interface … Odometer

• An odometer module based on this captor has 2
input signals used to increment/decrement a
readable counter for distance measurement

• How could we measure the speed ?
 As: speed = distance / time
 Distance is proportional to the number of pulses (edge)

1. Counting the time between 2 captor pulses (i.e. 2 rising edge
of A)

2. Counting the number pulses during a fixed time

40
RB - A2009

Programmable Interface … Odometer

• @dt a Speed counter is save in a speed register
• Speed counter is Cleared and start counting again
• Speed is proportional to the number of counted Odo pulses between dt
• dt pulses can be generated by a programmable interface

41
RB - A2009

OdoA

OdoB

dt

Distance Cnt

Speed Cnt

Speed

Programmable Interface … Odometer

• Propose a register model of the programmable
interface

• Imagine you have to use it as a software
programmer, are you happy with your model ?
Yes  OK go on and implement it.
No  Correct it until it's a nice proposition

• Implement it in VHDL and test it with simulation

42
RB - A2009

Odometer.. Sampling of input signals

• The OdoA and OdoB signals are
asynchronous related to a Clock signal
used in a FPGA or a microcontroller

• For a FPGA design, they have to be
synchronized before use by a
synchronous module inside the FPGA.

• At least 2 D Flip-Flop are needed for input
synchronization

43
RB - A2009

Odometer.. Sampling of input signals

• If an external asynchronous signal is used
inside a synchronous system it needs to be
synchronized before use

• Why ?
1. Metastability problem
2. At the same clk sampling time (i.e.

rising_edge(Clk)), all the logic elements using
the signal and clocking it need to see it at the
same level !!

44
RB - A2009

Odometer.. Sampling of input signals

Metastability problem:
To be correctly sampled by a FF a signal

needs to respect 2 very important timings:
• Tsu: Set up time
• Thold: Hold time

45
RB - A2009

Clk

D Q
Clk

D

Q

tsu thold

Odometer.. Sampling of input signals

If the rule is NOT respected:
• The output can be '0' or '1'  good
• The output can be in an intermediate level

for an undefined time  metastable level

46
RB - A2009

Clk

D

Q

Odometer.. Sampling of input signals

• The level of the metastable signal is between the '0' and the '1'.
• The time the metastable signal stay is probabilistic and theoretically

could be infinitive. Practically it disappears at the next signal sampling.
• Usually a DFF sampling a metastable level would not propagate it. As

for this intermediate level, a decision is take for a '0' or a '1'.
• It could propagate to a next DFF if the level change just at the sampling

point to the metastable threshold, the probability is very low but not 0 !
• Thus depending on the hardness of the design to do, more DFF are

needed.
Manufacturer provides information about the parameters for metastability.

47
RB - A2009

Clk

D

Q

Odometer.. Sampling of input signals

If the rule is NOT respected:
• Very bad for 1 DFF  worst if the same

signal D is going to more than 1 DFF:
• each could see a different input level

48
RB - A2009

Clk

D

Qa

Qb Qa, Qb :
2 DFF output

Qa

Qb

D
Clk

Odometer.. Sampling of input signals

At the same clk sampling time (i.e.
rising_edge), all the logics using the signal and
clocking it need to see it at the same level !!
A synchronizing system is necessary

49
RB - A2009

Clk

D Qm Qs

Odometer.. Sampling of input signals

 The first DFF can have a metastable signal as
output Qm

 The second one will probably filter it
 For very high reliability system more DFF could be

necessary, delay added !!

50
RB - A2009

Clk

D Qm Qs1 Qs2

Odometer.. Sampling of input signals

The Qsn signal can be used by all the logic
that need it: the level will be the same for all
the logic

51
RB - A2009

FPGA

Async Input Log

Log

Log

Odometer.. Sampling of input signals

 Inside the FPGA all the DFF using the same
D signal need to use the same Clock.

Special global lines are available inside a
FPGA for that purpose.

They are limited in number
 If we expect to use a normal signal as a

clock for a FF  it's a very bad idea
We need to use the Clock Enable feature of

a DFF in a FPGA

52
RB - A2009

Odometer.. Sampling of input signals

The clock is used only if the CE line is
activated ('1')

53
RB - A2009

Clk

D Q

CE

Odometer.. Sampling of input signals

What about the Odo Input ?
We need to detect a rising and falling edge of

OdoA and OdoB
Synchronization followed by logic for edge

detection

54
RB - A2009

Odometer.. Edge detection of input signals

55
RB - A2009

OdoA

OdoAS1

OdoAS2

Clk

OdoB

OdoAS3

REa

FEa

REa: Rising edge detection on a
FEa: Falling edge detection on a

They can be used
sampled by the Clk

Odometer.. Edge detection of input signals

56
RB - A2009

Clk

OdoA OdoAS1 OdoAS2 OdoAS3

REa

FEa

Odometer.. Edge detection A and B

57
RB - A2009

OdoAS1
OdoAS2
OdoAS3

OdoA
Clk

OdoB

REa
FEa

OdoBS1
OdoBS2
OdoBS3
REb
FEb

Odometer.. Edge detection of input signals

58
RB - A2009

Clk

OdoA OdoAS1 OdoAS2 OdoAS3

REa

FEa

OdoB OdoBS1 OdoBS2 OdoBS3

REb

FEb

Odometer.. Edge detection to Counter

59
RB - A2009

OdoAS1
OdoAS2
OdoAS3

OdoA
Clk

OdoB

REa
FEa

OdoBS1
OdoBS2
OdoBS3
REb
FEb
Inc
Dec
Cnt + + + + + - -

Odometer.. Edge detection .. Inc/Dec generation

60
RB - A2009

Clk

OdoA OdoAS1 OdoAS2 OdoAS3

REa

FEa

OdoB OdoBS1 OdoBS2 OdoBS3

REb

FEb

Inc

Similar for Dec

Odometer.. Sampling of input signals

Now you can found how to use that to
increment/decrement a counter for distance
measurement

And translate in VHDL!!

Good work !

61
RB - A2009

	Embedded Systems �� "System On Programmable Chip" �Programmable interface design� Parallel port Design�Odometry - PWM �
	Design of a Parallel Port
	Goal
	Typical SOPC
	Goal
	Avalon Parallel Port, main features
	Processor Interface –� programmable logic
	Avalon Slave bus Cycles
	Slave Avalon Bus Specifications
	Parallel Port Accesses (1)
	Parallel Port Accesses (2)
	Parallel Port External interface
	Parallel Port Module on Avalon
	I/O Addresses in the module, access map
	Registers selection
	LIBRARY
	Entity
	Architecture: Internal signals
	ParallelPort Architecture, external interface
	Avalon write�slave, 0 wait
	ParallelPort Architecture, registers access
	Avalon slave�read, 0 wait, asynchronous peripheral
	ParallelPort Architecture, registers access
	Test and implementation
	Creation in QuartusII / SOPC Builder
	Conclusion
	Diapositive numéro 30
	Conclusion
	Others Programmables Interfaces design exemples
	Other Programmable Interface
	Programmable Interface … PWM
	Programmable Interface … PWM
	Programmable Interface … PWM
	Programmable Interface … PWM
	Programmable Interface … PWM
	Other Programmable Interface… Odometer
	Programmable Interface … Odometer
	Programmable Interface … Odometer
	Programmable Interface … Odometer
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Sampling of input signals
	Odometer.. Edge detection of input signals
	Odometer.. Edge detection of input signals
	Odometer.. Edge detection A and B
	Odometer.. Edge detection of input signals
	Odometer.. Edge detection to Counter
	Odometer.. Edge detection .. Inc/Dec generation
	Odometer.. Sampling of input signals

