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Design of a Parallel Port 

Example of a development methodology of a 
programmable parallel port interface 
 

• Processor Interface 
• Processor view : registers model 
• Interface design 
• Realization in VHDL 
• Test Bench and simulation 
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Goal 

Programmable Parallel Input/Output 
Interfaces are very common on a SOPC. 
They allow access to simple bits of 
information between the processor and the 
external world.  
The control is done by the processor 
through registers in the programmable 
interface. 
Each register is seen at a specific address. 
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Typical SOPC 
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Goal 

The objective here is to design one interface 
for an Avalon bus as a slave module. 
The main characteristics of the module are:  
 Bidirectional Port,  
 Programmable Direction for each bit 
 Special features for modifying the port bits  

 
 Realization in VHDL for FPGA (that can be 
simulate  and synthesizable) 
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Avalon Parallel Port, main features  

• Realization of the parallel Port on Avalon 
Bus with: 
8 bits port 
Programmable direction for each bit 
Write direct to PortPar 
Function Setbits 
Function Clrbits 
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Processor Interface – 
 programmable logic 

• We have a softcore processor on an 
Avalon bus in a FPGA.  

• In the FPGA a specific parallel port is to be 
developed, it has to be added on the 
Avalon with SOPC Builder in the Quartus 
II environment.  
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Avalon Slave bus Cycles 

• Read and Write Access 
• Synchronous 
• Separate data bus for read and write 

access 
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Slave Avalon Bus Specifications 

The Avalon bus provide signals to the module: 
 
• nReset Initialization 
• Clk  Clock 
• Address(n..0) Address, the address is a register 

 number address. 
• ChipSelect Selection of this module 
• Read Read access 
• ReadData[7..0] Data to provide by the module in  read 

 access 
• Write Write access 
• WriteData[7..0] Data send to the module in write 

 access 
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Parallel Port Accesses (1)  

 8 bits bidirectional Port,  
 Each pin can be specified as input or output 
 The direction is specified in RegDir, (0 : input, 1 : output)  

 The direction can be read back 
 

 The state of the port at the pin level can be read 
in : RegPin 
 

13 
RB -  A2009 



Parallel Port Accesses (2) 

 The state value is memorized in a register: 
 RegPort  Port Register 
 To update this register, 3 accesses are available : 
 
1. RegPort : Direct memorized value : '0' or '1' 
2. RegSet : The bits specified at '1' level during the write 

cycle at this address, are saved as '1' in the register, 
the others bits are not changed  

3. RegClr : The bits specified at '1' level during the write 
cycle at this address, are saved as '0' in the register, 
the others bits are not changed  

  This register can be read back 
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Parallel Port External interface 

ParPort is the signal name for the pins. 
If the direction is output: 
The value memorized in RegPort is 

Outputted. 
If the direction is input: 
The output value is 'Z': High impedance (tri-

stated) 
 

In both case the value at the pin interface 
can be read with an access at RegPin 
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Parallel Port Module on Avalon 
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I/O Addresses in the module, access map 

Adresses in 
the module 

Write 
Registers 

DataWrite 
[7..0] 

Read 
Registers 

DataRead 
[7..0] 

0 RegDir  iRegDir RegDir iRegDir  

1 - Don't care RegPin ParPort  

2 RegPort  iRegPort RegPort iRegPort   

3 RegSet  iRegPort - 0x00 
4 RegClr  iRegPort - 0x00 
5 - Don't care - 0x00 
6 - Don't care - 0x00 
7 - Don't care - 0x00 
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Registers selection 
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To do : 
 VHDL entity & architecture  



LIBRARY 

19 
RB -  A2009 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 



Entity 

ENTITY ParallelPort IS 
   PORT(  
 -- Avalon interfaces signals 
      Clk  : IN std_logic; 
      nReset : IN std_logic; 
 
      Address : IN std_logic_vector (2 DOWNTO 0); 
      ChipSelect : IN std_logic; 
 
      Read : IN std_logic; 
      Write : IN std_logic; 
 
      ReadData : OUT std_logic_vector (7 DOWNTO 0); 
      WriteData : IN std_logic_vector (7 DOWNTO 0); 
 
 -- Parallel Port external interface 
    ParPort : INOUT std_logic_vector (7 DOWNTO 0) 
   ); 
End ParallelPort; 
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Architecture: Internal signals 

 -- signals for register access 
 
   signal   iRegDir :  std_logic_vector (7 DOWNTO 0); 
   signal   iRegPort:  std_logic_vector (7 DOWNTO 0);  
   signal   iRegPin :  std_logic_vector (7 DOWNTO 0); 
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ParallelPort Architecture, external interface 
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ARCHITECTURE comp OF ParallelPort IS 

… SIGNAL ... 
BEGIN 
 -- Parallel Port output value  
 pPort: 
 process(iRegDir, iRegPort) 
 begin 
  for i in 0 to 7 loop 
   if iRegDir(i) = '1' then 
    ParPort(i) <= iRegPort(i); 
   else 
    ParPort(i) <= 'Z';  
   end if; 
  end loop; 
 end process pPort; 

 
 -- Parallel Port Input value 
 iRegPin <= ParPort; 
-- others processes.. 
END comp; 



Avalon write 
slave, 0 wait 
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ParallelPort Architecture, registers access 
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-- Process Write to registers  
pRegWr: 

process(Clk, nReset) 
begin 

if nReset = '0' then 
 iRegDir <= (others => '0');    -- Input by default 
  ….. 
elsif rising_edge(Clk) then 

if ChipSelect = '1' and Write = '1' then  -- Write cycle 
case Address(2 downto 0) is 
  when "000" => iRegDir <= WriteData ; 
  when "010" => iRegPort <= WriteData; 
  when "011" => iRegPort <= iRegPort OR WriteData; 
  when "100" => iRegPort <= iRegPort AND NOT WriteData; 
  when others => null; 
end case; 

end if; 
end if; 

end process pRegWr; 



Avalon slave 
read, 0 wait, asynchronous peripheral 
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ReadData available at  
next rising edge of clk (E) 



ParallelPort Architecture, registers access 

-- Read Process to registers  
pRegRd: 

process(Clk) 
begin 

if rising_edge(Clk) then 
 ReadData <= (others => '0');    -- default value 
 if ChipSelect = '1' and Read = '1' then -- Read cycle 

 case Address(2 downto 0) is 
  when "000" => ReadData <= iRegDir ; 
  when "001" => ReadData <= iRegPin;  
  when "010" => ReadData <= iRegPort; 
  when others => null; 
 end case; 
end if; 

end if; 
end process pRegRd; 
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Test and implementation 

• This module can be now be tested by simulation with a 
test bench or timing stimulation  to do as exercise 
 Read, Write access have to be generated to control the registers 

and verify the result 
• Then a new component can be created with SOPC 

Builder 
• It can then be integrated in a NIOSII system 
• The system can be generated from SOPC 
• Compiled by QuartusII after added to a schematic design 
• Downloaded on a real system 
• Program the NIOSII processor to access the registers 

(NIOS IDE) and test the full system 
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Creation in QuartusII / SOPC Builder 

1. You need to create a Project for each 
programmable interface you developed in 
QuartusII 

2. Don't use space in directory/files names 
3. When you create a VHDL entity/architecture, 

the name of the file is the name of the entity 
4. Entity and architecture are in the same file 
5. You create a new Project for the full design 
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Conclusion 

• Now you are able to design a specific 
programmable interface for a bus for 
Programmable FPGA, here it was the 
Avalon 

• The methodology for this kind of interface 
is similar for Amba, Wishbone or others 
internal bus 

• The bus generation depend on the used 
tools, here SOPC Builder do the job ! 
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Conclusion 

• You know: 
The basic use of Avalon synchronous bus 
The memory map model of a programmable 

interface 
To translate this model in VHDL 
To control pins on a FPGA ('0', '1', 'Z') 
To implement the interface module in a 

complete system 
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Others Programmables Interfaces design exemples 

• PWM: Pulse Width Modulation 

• Odometer: Distance / Speed measurement 
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Other Programmable Interface 

Pulse Width Modulation 
 

• Generation of a continuous pulse train 
• Can be used as a D/A converter 
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Programmable Interface … PWM 

• To control a motor, a PWM module with 2 
outputs can be used : 
PWMa and PWMb 
They are connected to a DC motor through a H-

bridge 
Depending which output send the PWM signal, 

the motor turn in one direction or the other.  
PWMa  PWM, PWMb  Idle  Direction A 
PWMa  Idle, PWMb  PWM  Direction B 

34 
RB -  A2009 



Programmable Interface … PWM 

PWM Output control 
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Programmable Interface … PWM 
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Programmable Interface … PWM 

• We want to be able to program : 
 The period of the PWM signal 
 The active Time (Duty) of the PWM 
 The polarity of the active time ('0') or ('1') 
 Be able to enable/disable the output  a command register 
 Direction is the sign of the Duty 

 If the Duty is positive: 
 PWMa is the PWM output, PWBb is in the Idle state 

 If the Duty is negative: 
 PWMb is the PWM output, PWBa is in the Idle state 

 Period value is on 15 bits 
 Duty is on 16 bits signed in cpl'2  real duty is the abs(RegDuty) 
 The new Duty is to be used only at the end of a Period if the 

PWM output is enabled  
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Programmable Interface … PWM 

• Propose a register map of this interface 
• Create the entity in VHDL 
• Implement the Architecture 
• Simulate the access 
• Create a component with SOPC Builder 
• Integrate it in a NIOSII system 
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Other Programmable Interface… Odometer 

Odometer 
• A 2 signals system to measure speed and 

displacement 
• Depending on the phase of A and B the direction 

of the rotation can be determinate  
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Programmable Interface … Odometer 

• An odometer module based on this captor has 2 
input signals used to increment/decrement a 
readable counter for distance measurement 
 

• How could we measure the speed ? 
 As: speed = distance / time 
 Distance is proportional to the number of pulses (edge) 

1. Counting the time between 2 captor pulses (i.e. 2 rising edge 
of A) 

2. Counting the number pulses during a fixed time  
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Programmable Interface … Odometer 

• @dt a Speed counter is save in a speed register 
• Speed counter is Cleared and start counting again 
• Speed is proportional to the number of counted Odo pulses between dt 
• dt pulses can be generated by a programmable interface 
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Programmable Interface … Odometer  

• Propose a register model of the programmable 
interface 

• Imagine you have to use it as a software 
programmer, are you happy with your model ? 
Yes  OK go on and implement it. 
No  Correct it until it's a nice proposition  

• Implement it in VHDL and test it with simulation 
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Odometer.. Sampling of input signals 

• The OdoA and OdoB signals are 
asynchronous related to a Clock signal 
used in a FPGA or a microcontroller 

• For a FPGA design, they have to be 
synchronized before use by a 
synchronous module inside the FPGA. 

• At least 2 D Flip-Flop are needed for input 
synchronization 
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Odometer.. Sampling of input signals 

• If an external asynchronous signal is used 
inside a synchronous system it needs to be 
synchronized before use 

• Why ? 
1. Metastability problem 
2. At the same clk sampling time (i.e. 

rising_edge(Clk)), all the logic elements using 
the signal and clocking it need to see it at the 
same level !! 
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Odometer.. Sampling of input signals 

Metastability problem: 
To be correctly sampled by a FF a signal 

needs to respect 2 very important timings: 
• Tsu: Set up time 
• Thold: Hold time 
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Odometer.. Sampling of input signals 

If the rule is NOT respected: 
• The output can be '0' or '1'  good 
• The output can be in an intermediate level 

for an undefined time  metastable level 
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Odometer.. Sampling of input signals 

• The level of the metastable signal is between the '0' and the '1'. 
• The time the metastable signal stay is probabilistic and theoretically 

could be infinitive. Practically it disappears at the next signal sampling. 
• Usually a DFF sampling a metastable level would not propagate it. As 

for this intermediate level, a decision is take for a '0' or a '1'. 
• It could propagate to a next DFF if the level change just at the sampling 

point to the metastable  threshold, the probability is very low but not 0 ! 
• Thus depending on the hardness of the design to do, more DFF are 

needed. 
Manufacturer provides information about the parameters for metastability.   
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Odometer.. Sampling of input signals 

If the rule is NOT respected: 
• Very bad for 1 DFF  worst if the same 

signal D is going to more than 1 DFF:  
• each could see a different input level 
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Odometer.. Sampling of input signals 

At the same clk sampling time (i.e. 
rising_edge), all the logics using the signal and 
clocking it need to see it at the same level !! 
A synchronizing system is necessary 
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Odometer.. Sampling of input signals 

 The first DFF can have a metastable signal as 
output Qm 

 The second one will probably filter it 
 For very high reliability system more DFF could be 

necessary, delay added !! 
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Odometer.. Sampling of input signals 

The Qsn signal can be used by all the logic 
that need it: the level will be the same for all 
the logic  
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Odometer.. Sampling of input signals 

 Inside the FPGA all the DFF using the same 
D signal need to use the same Clock. 

Special global lines are available inside a 
FPGA for that purpose. 

They are limited in number 
 If we expect to use a normal signal as a 

clock for a FF  it's a very bad idea 
We need to use the Clock Enable feature of 

a DFF in a FPGA  
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Odometer.. Sampling of input signals 

The clock is used only if the CE line is 
activated ('1')  
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Odometer.. Sampling of input signals 

What about the Odo Input ? 
We need to detect a rising and falling edge of 

OdoA and OdoB 
Synchronization followed by logic for edge 

detection  
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Odometer.. Edge detection of input signals 
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Odometer.. Edge detection of input signals 
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Odometer.. Edge detection A and B 
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Odometer.. Edge detection of input signals 
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Odometer.. Edge detection to Counter 
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Odometer.. Edge detection .. Inc/Dec generation 
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Odometer.. Sampling of input signals 

Now you can found how to use that to 
increment/decrement a counter for distance 
measurement 

And translate in VHDL!! 
 
 

Good work ! 
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