
Real Time Embedded Systems

"System On Programmable Chip"

Profiling methodology 

René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch

RB - 2008 - EPFL/LAP

1

http://moodle.msengineering.ch/course/view.php?id=12


Contents

• Introduction

• Software/hardware profiling

• Trace

• Profiling laboratory

Reference: 
• http://www.altera.com/literature/an/an391.pdf

• http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

• http://www-list.cea.fr/labos/fr/LSL/test/pathcrawler/wcet.html

2

RB - 2008 - EPFL/LAP

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf


Introduction

• In a lot of case in an Embedded system it 
is necessary to know the execution time of 
a function, a thread or some part of a 
program.

• Especially for process scheduling, the 
Worst Case Execution Time (WCET) is an 
important parameter.

• The "Real Time programming course" (JD 
Decotignie, EPFL) details the algorithms 
used. 

3

RB - 2008 - EPFL/LAP



Introduction

• In this chapter, we will have a look and 

practical laboratory on software and 

hardware profiling.

• Profiling is a method for a software / 

hardware designer to evaluate the time 

spends in part of a program.

• Profiling can be done in software only or 

with the help of part of hardware.

4

RB - 2008 - EPFL/LAP



Introduction

• Time estimation can be done.
• statically by the way of simulator, graph 

analysis, the big challenges are :
• estimation of cache miss/hit, 

• memory access, memory organisation

• burst in memory access

• interruptions (asynchronous events) time execution 

and rate

• DMA bus time use

• synchronization suspend time (semaphore, flags, 

…)

• Dynamically by the execution on real system

5

RB - 2008 - EPFL/LAP



Introduction

• In dynamically test, it is very difficult to be 

sure that the Worst Case is detected, but 

some intervals can be found. Margins need 

to be taken in account for security.

• A very difficult estimation time is when 

floating number are used and calculated by 

software.

6

RB - 2008 - EPFL/LAP



Software profiling

• Software profiling is done by specifying to 

the compiler to add some instructions at 

the start and end of a function. Information 

will be saved in a file and accumulated 

time is registered.

• Precise time, depending on timer accuracy 

and period, can be registered.

• Unfortunately, there are a big number of 

instructions needed for this possibility.

7

RB - 2008 - EPFL/LAP



Software profiling

• Each time there is an input to a function, 

address and time are saved

• Each time there is a return or end of a 

function, execution time is cumulated for 

this function in memory.

• The compiler need to support this 

functionality, gcc do it with a special 

compiler switch and the xxx-elf-gprof the 

profiler tool.

8

RB - 2008 - EPFL/LAP



Software profiling

• Statistical dynamic profiling can be done with a 
timer.

• Every σ provided by an interruption and 
generated by a timer, the tool looks the address 
of the PC. It can known the function executed 
and increment an associated counter.

• If the sampling time is big enough and not 
synchronized with the scheduler timer, good 
execution statistics can be available.

• Here again, time is lost by the profiling system 
and reduce the real execution time.

9

RB - 2008 - EPFL/LAP



Hardware profiling

• Dynamic profiling can be done with the help of 
some hardware part.

• Counters with big capacity (64 bits) and 
resolution (MHz .. 100 MHz) can be added to the 
system (and thus use some hardware 
resources). The counters are accessible as 
programmable interface.

• The principle is the same as for software 
profiling, the compiler add access at beginning 
(START) and end (STOP) of a function to the 
specific counter action associated to it.

• After some time, the total time spends to the 
function can be known. 

10

RB - 2008 - EPFL/LAP



Hardware profiling

• We can imagine min-max function for this 

counter.

• The time added to access the counter is 

less than a full software profiling

• The number of counter is limited by the 

available space in the FPGA

• Big precision can be obtain, but we can 

NOT guaranty that the WCET is met. 

11

RB - 2008 - EPFL/LAP



Performance counter core

12

RB - 2008 - EPFL/LAP



Performance counter functions

13

RB - 2008 - EPFL/LAP



Performance counter functions

perf_print_formatted_report(

(void *)PERFORMANCE_COUNTER_BASE, 

// Peripheral's HW base address

alt_get_cpu_freq(), // defined in "system.h"

3, // How many sections to print

"1st checksum_test", // Display-names of sections

"pc_overhead",

"ts_overhead");

14

RB - 2008 - EPFL/LAP



Performance counter functions

• 3 sections, relative and absolute timing 

information

15RB - 2008 - EPFL/LAP



Profiling display (hierarchical/flat)

16

RB - 2008 - EPFL/LAP



Hardware profiling

• Using external hardware, as big memory, it 

is possible to TRACE the program execution 

by registering all addresses. A post 

processing can be executed to analyze the 

registered information and profiling the 

program execution. Some filters can be 

added on the memorization system.

• This information can be very useful for 

debugging purpose

17

RB - 2008 - EPFL/LAP



Hardware profiling

• Traces registration of hardware signals (as 

with Altera signal tap analyzer or Xilinx 

chipscope), as memory access, can 

determine the good or bad utilization of 

memory bandwidth, and thus function 

execution time.

18

RB - 2008 - EPFL/LAP



Hardware profiling

• With the help of a precise timer, execution time 
between an event and synchronized process 
access can be obtain.

• Interrupt response, interrupt latency can be 
precisely measure by this way.

• With he help of parallel port and external logic 
analyzer, function time execution, jitter and 
variation can be observed. Some instruction to 
access the parallel port are necessary and need 
to be provided by the programmer or the 
compiler with pragma informations.

19

RB - 2008 - EPFL/LAP



Profiling 

• Profiling can be very useful to help to 

optimize time execution. The programmer 

can have information were to optimize the 

program and/or where to search to 

accelerate some part by hardware 

accelerator or specific optimized 

instructions. 

20

RB - 2008 - EPFL/LAP



GNU profiler advantage/disadvantage

• The software profiler gives a complete 

view of the program profile without the 

programmer intervention. 

• Software is added thus reducing the real 

execution time. Each function is larger in 

code. It access another function to collect 

information → Cache will not works as 

without profiling, more cache miss will 

be available.

21

RB - 2008 - EPFL/LAP



GNU profiler advantage/disadvantage

• Profiling by timer sampling is not available 

when the processor is interrupt disabled. 

Thus time spend in interrupt routine is not 

take in account, if timer interrupts are not 

enabled.

• Software Profiling is done for the entire 

system, not for one specific function.

22

RB - 2008 - EPFL/LAP



Hardware profiling

• The hardware trace needs a specific 

hardware interface and the analyzing 

software (ex. from FS2 or Lauterbach, for 

NIOS2 systems)

23

RB - 2008 - EPFL/LAP



Laboratory

• To exercise profiling make the Altera

tutorial

• Be careful to NOT use the small library, as 

floating point values are printed. The full 

library is needed for that → with FPGA4U 

external SDRAM is thus necessary.

24

RB - 2008 - EPFL/LAP


