Real Time Embedded Systems

"System On Programmable Chip"

Profiling methodology

René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch

1
RB - 2008 - EPFL/LAP

P

=

L

http://moodle.msengineering.ch/course/view.php?id=12

Contents

Introduction
Software/hardware profiling
Trace

Profiling laboratory

Reference.
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/hb/nios2/ats qii55001.pdf

http://www-list.cea.fr/labos/fr/LSL/test/pathcrawler/wcet.html

2
RB - 2008 - EPFL/LAP

F

PrL

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Introduction

* In a lot of case in an Embedded system it
IS necessary to know the execution time of
a function, a thread or some part of a
program.

» Especially for process scheduling, the
Worst Case Execution Time (WCET) Is an
Important parameter.

* The "Real Time programming course" (JD
Decotignie, EPFL) detalls the algorithms
used.

3
RB - 2008 - EPFL/LAP

M
T

1

Introduction

* In this chapter, we will have a look and

oractical laboratory on software and
nardware profiling.

* Profiling 1s a method for a software /
nardware designer to evaluate the time
spends in part of a program.

* Profiling can be done In software only or
with the help of part of hardware.

4
RB - 2008 - EPFL/LAP

mnm
v
r

Introduction

 Time estimation can be done.
 statically by the way of simulator, graph

analysis, the big challenges are :
« estimation of cache miss/hit,
* Memory access, memory organisation
burst in memory access
Interruptions (asynchronous events) time execution
and rate
DMA bus time use
synchronization suspend time (semaphore, flags,
...)
 Dynamically by the execution on real system

5 EPFL

RB - 2008 - EPFL/LAP

Introduction

* In dynamically test, it is very difficult to be
sure that the Worst Case Is detected, but
some Intervals can be found. Margins need
to be taken in account for security.

» A very difficult estimation time Is when
floating number are used and calculated by
software.

6
RB - 2008 - EPFL/LAP

m
T
1

Software profiling

« Software profiling Is done by specifying to
the compliler to add some instructions at
the start and end of a function. Information
will be saved In a file and accumulated
time Is registered.

* Precise time, depending on timer accuracy
and period, can be registered.

« Unfortunately, there are a big number of
iInstructions needed for this possibility.

7
RB - 2008 - EPFL/LAP

M
T

1

Software profiling

« Each time there is an input to a function,
address and time are saved

« Each time there Is a return or end of a
function, execution time I1s cumulated for

this function in memory.

* The compiler need to support this
functionality, gcc do it with a special
compiler switch and the xxx-elf-gprof the
profiler tool.

8
RB - 2008 - EPFL/LAP

m

1

Software profiling

 Statistical dynamic profiling can be done with a
timer.

* Every o provided by an interruption and
generated by a timer, the tool looks the address
of the PC. It can known the function executed
and increment an associated counter.

* If the sampling time Is big enough and not
synchronized with the scheduler timer, good
execution statistics can be available.

* Here again, time is lost by the profiling system
and reduce the real execution time.

9 EPFL

RB - 2008 - EPFL/LAP

Hardware profiling

* Dynamic profiling can be done with the help of
some hardware part.

« Counters with big capacity (64 bits) and
resolution (MHz .. 100 MHz) can be added to the
system (and thus use some hardware
resources). The counters are accessible as
programmable interface.

* The principle Is the same as for software
profiling, the compiler add access at beginning
(START) and end (STOP) of a function to the
specific counter action associated to it.

« After some time, the total time spends to the
function can be known.

- cPrL

RB - 2008 - EPFL/LAP

Hardware profiling

* We can imagine min-max function for this
counter.

* The time added to access the counter Is
less than a full software profiling

* The number of counter is limited by the
available space in the FPGA

 Big precision can be obtain, but we can
NOT guaranty that the WCET Is met.

11
RB - 2008 - EPFL/LAP

M
T

1

Performance counter core

Bit Description
Offset Register Name Read Write
31...0 31... 0

0 T[0] 1, global clock cycle counter [31: 0] (1) 0=STOP

1=RESET

1 T[0]n;s global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 - (1) (1) (1)

4 T[1],, section 1 clock cycle counter [31: 0] (1) 0=STOP

5 T[1] s section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev (1] section 1 event counter (1) (1)

7 - (1) (1) (1)

8 T[2]16 section 2 clock cycle counter [31: 0] (1) 0=STOP

9 T[2] s section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 - (1) (1) (1)
4n+0 T[nli, section n clock cycle counter [31: 0] (1) 0=STOP
4n+ 1 TInlu: section n clock cycle counter [63:32] (1) 0 = START
4n+ 2 Ev [n] section n event counter (1) (1)
4n+3 - (1) (1) (1)

12
RB - 2008 - EPFL/LAP

m
1

Performance counter functions

Name
PERF RESET ()

Summaty

Stops and disables all counters, resetting them to 0.

PERF START MEASURING ()

Starts the global counter and enables section counters.

PERF STOP MEASURING ()

Stops the global counter and disables section counters.

PERF BEGIN()

Starts timing a code section.

PERF END ()

Stops timing a code section.

perf print formatted report()

Sends a formatted summary of the profiling results to stdout.

perf get total time()

Returns the aggregate global profiling time in clock cycles.

perf get section time ()

Returns the aggregate time for one section in clock cycles.

perf get num starts()

Returns the number of counter events.

alt get cpu freq()

Returns the CPU frequency in Hz.

13
RB - 2008 - EPFL/LAP

PrL

Performance counter functions

perf _print_formatted report(
(void *)PERFORMANCE_COUNTER_BASE,
// Peripheral's HW base address

alt_get_cpu_freq(), // defined in "system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections

"pc_overhead",
"ts_overhead");

14 cPrL

RB - 2008 - EPFL/LAP

Performance counter functions

--Performance Counter Report--
Total Time: 2.07711 seconds (103855534 clock-cyclesg)

+----—— - +-------- e i +----—-—— - +----------- +

| Section | $ | Time (sec)| Time (clocks) |Occurrences|

+--- - +-------- e b +------------—-- +----------- +

| 1st checksum test| 50 | 1.03800 | 51899750 | 1 |

+--- - +-------- e b +------------—-- +----------- +

| pc_overhead |1.73e-05| 0.00000 | 18 | 1 |

+--- - +-------- +--------- - +------------—-- +----------- +

| ts_overhead |4.24e-05| 0.00000 | 44 | 1 |

+-mmm s +---—--=- e i +-mmmmm - +--mm - +

« 3 sections, relative and absolute timing

iInformation
—pre
= |'L

RB - 2008 - EPFL/LAP 15

Profiling display (hierarchical/flat)

GECall

ELn ﬂindo'r\f

8

gsch Sampls hit covers 32 byte (s)

called

1
1

1/1
171
174
1/1
ik
171
13
143

E

for 0.31% of 3.13 sec

name

_atarc [2]
alt_main [1]

main [3]

alt_=ys_init [7] J
alt_dev Llist_inser
alt lepd 163207 init
alt_io_redirect [42
_do_ctors [110]
alt_releass Td [35]
alt_open £d [33]

“oSpontancous>
_start [Z]
alt_main [1]

alt_main [1]
mwain [3]
checksimn test [4]
alt_busy slecp [11]
usleep [15]

main [3]
checksum test [4]

alt deache flush al
-

File Edit Wavigate Search Project Help
| |-+ | ;
Hierardy £2 % MavigabrlEDokmarks| =0 &= grmon.out 50N
= =sportansoLs >
: 00(0.00%) 2,77 (86.83%) _start granularity:
=-0.00(0.00%) 2.77(86.63%) akt_main
E 0.00(0.00%) 248(77.74%) main index % time =elf children
| B-2A48(77.74%) 2.48(77.74%) checksumn_test 0.oa 2.77
£.0.00(0,00%) 0.00(0.00%: alt_dcache_flush_all [1] 86.7 0.00 2.7
0,006, 13 %) 0.00(0.12%) alt_busy_slesp 0.00 2.18
-0.00(0.00%) 0.00{0.00%) usleep el
- 0.00¢0.00%) 0.19(5.05%) alt_sys_init D08 000
- 0.05(1.96%) D.0B(1.56%) alt_dev_list_riert g'gg ggg
- 0,00(0.00%) 0.03(0.54%) alt_icc_16207_pit 000 o.om
- 0L.00(0.00%) 000G 00%) att_in_redirect S e
-0.02{0.00%) 0.00¢0.00%) _do_ctors e Gt
0.0000.00%) 0.00(000%) alt_relkase_fd | T
: - 0.03(0.00%) 0.00(0.00%) alt_open_fd
E---D.E‘B(Q.Dg%} 0.29(9.09%) att_doache_flsh [2] 6.7 0.oa e
0,10(3.13%) 0.10(3,13%) udivrnodsi4 0.00 z.77
COo@ioEwyCo2@aa%y et 0000 (NEecceseccesrrsemrs e e s e
-0.02(0.63%) 0.02(0.63%) _exit 0.00 z.45
- 0.00{0.13%) 0.00¢0.13%) alt_busy_skep [s] sl 000 ot
.0,00¢0.00%) 0.00¢0.00%) uslesp z.48 0.00
-+0,00(0.00%) 0.00(0.00%) _do_dtors v.00 o.oo
L.0,01(0,31%) 0.01(0,31 %) fetat 000 =00
T H e H L - N | o e e e e
z.48 o.oo
[4] 77.7 .4a o.oo
0.00 0.00
4]

| 3

25 Samples - Function Tma||

Mame

I Filename

I Lina Mumber I Parcent Timel Currilative Time I Self Tima I Calls I Self Tima Per Call I Total Tirme Per Call I;I

alt_avalon_jtag_uart_irg
alt_avalon_jtag_uart_timeout
alt_avalon_jtag_vart_write
alt_avalon_timer_sc_init
alt_avalon_timer_sc_irg
alt_avalon_uart_init
alt_busy_sleep
alt_busy_sleep
alt_check_primary_tabe
alt_drache_flush
alt_dcache_flush_all
alt_oe_llist_insert

altera_avalor_jiag_uart.c
alera_avaln_jtag_uart.c
altera_avaln_jtag_uart.c
altera_avalo_timer_sc.c
alera_avalbr_timer_sc.c
alera_avalor_vart.c
alt_busy_skeep.c
alt_busy_skeep.c

alera_avalon_cfi_flash_t..

alr_drache_flush.c
alt_dcache_flush_all.c
alt_dev_llist_nsart.C

2492
361
148
71
24
631
127
33
616
a6
42
14

0.00 3.19
0,00 319
0.o0 3149
0.00 3.19
0,00 3.19
0,00 3.19
1.14 2,94
0.00 3.19
0,00 3.19
Q.08 ;

0.00 ig
i 2,90

0.00
0.ao
0.00
.00
.00
C.ao
0.04
0.0o
C.ao
0.29
0.0o
0.£3

aon
4

=m
000 0.oo
0.0 0.0 J
0.o0 0.oo
0.00 0.oo
0.00 0.00
0.00 oo
0.00 0,00
0.00 oo
0.00 0,00
6341 6341 ¥ |

RB - 2008 - EPFL/LAP

m
1

Hardware profiling

* Using external hardware, as big memory, it
IS possible to TRACE the program execution
by registering all addresses. A post
processing can be executed to analyze the
registered information and profiling the
program execution. Some filters can be
added on the memorization system.

* This information can be very useful for
debugging purpose

17
RB - 2008 - EPFL/LAP

mnm
T
r

Hardware profiling

* Traces registration of hardware signals (as
with Altera signal tap analyzer or Xilinx
chipscope), as memory access, can
determine the good or bad utilization of
memory bandwidth, and thus function
execution time.

18
RB - 2008 - EPFL/LAP

mnm
v
r

Hardware profiling

« With the help of a precise timer, execution time
between an event and synchronized process
access can be obtain.

 Interrupt response, interrupt latency can be
precisely measure by this way.

« With he help of parallel port and external logic
analyzer, function time execution, jitter and
variation can be observed. Some instruction to
access the parallel port are necessary and need
to be provided by the programmer or the
compiler with pragma informations.

= cPrL

RB - 2008 - EPFL/LAP

Profiling

* Profiling can be very useful to help to
optimize time execution. The programmer
can have information were to optimize the
program and/or where to search to
accelerate some part by hardware
accelerator or specific optimized
Instructions.

20
RB - 2008 - EPFL/LAP

mnm
T
r

GNU profiler advantage/disadvantage

* The software profiler gives a complete
view of the program profile without the
programmer intervention.

« Software Is added thus reducing the real
execution time. Each function is larger In
code. It access another function to collect
iInformation - Cache will not works as
without profiling, more cache miss will
be available.

- cPrL

RB - 2008 - EPFL/LAP

GNU profiler advantage/disadvantage

* Profiling by timer sampling is not available
when the processor Is interrupt disabled.
Thus time spend In interrupt routine Is not

take in account, If timer interrupts are not
enabled.

« Software Profiling is done for the entire
system, not for one specific function.

22
RB - 2008 - EPFL/LAP

M
T

1

Hardware profiling

* The hardware trace needs a specific
hardware interface and the analyzing

software (ex. from FS2 or Lauterbach, for
NIOS2 systems)

23
RB - 2008 - EPFL/LAP

M
T

1

Laboratory

* To exercise profiling make the Altera
tutorial

* Be careful to NOT use the small library, as
floating point values are printed. The full
library is needed for that - with FPGA4U
external SDRAM is thus necessary.

24
RB - 2008 - EPFL/LAP

M
T

1

