# Image Formation 

P. Fua
(Taught by M. Salzmann)
IC-CVLab
EPFL

## Reminder: Computer Vision

Goal: Inferring the properties of the world from one or more images

- Photographs
- Video Sequences
- Medical images
- Microscopy data

$\rightarrow$ Image Understanding
EPFL


## Reminder: Challenges

Vision involves dealing with:

- Noisy images
- Many-to-one mapping
- Aperture problem
$\rightarrow$ Requires:
- Assumptions about the world
- Statistical and physics-based models
- Training data

True image understanding seems to require a great deal of thinking. We are not quite there yet.

## Reminder: Historical Perspective

- 1960s: Beginnings in artificial intelligence, image processing and pattern recognition.
- 1970s: Foundational work on image formation.
- 1980s: Vision as applied mathematics, geometry, multi-scale analysis, control theory, optimization.
- 1990s: Physics-based models, Probabilistic reasoning.
- 2000s: Machine learning.
- 2010s: Deep Learning.
- 2020s: ?????
--> Improved understanding and successful applications in graphics, mapping, biometrics, and others but still far from human performance.


## Reminder: A Teachable Scheme



Decomposition of the vision process into smaller manageable and implementable steps.
--> Paradigm followed in this course
--> May not be the one humans use

## Reminder: Human Vision

## It Works!!

-->Proof of existence.

- The image formation process is well understood
- The image understanding one remains mysterious

EPFL

## Reminder: Pathways To The Brain



## Reminder: Image Formation



An inverted image forms on the retina.

## Reminder: Retina



## Reminder: Scotopic vs Photopic



Low luminance (< $1 \mathrm{~cd} / \mathrm{m}^{2}$ ): 120 million rods with peak spectral response around 510 nm .
Primarily located outside the fovea.

High luminance (> $100 \mathrm{~cd} / \mathrm{m}^{2}$ ): 7 million cones per retina.

- Primarily located in the fovea. Three types of cones (S, M, L) with peak spectral response at different nm .
- Ratio L:M:S $\cong 40: 20: 1$


## Reminder: Scotopic vs Photopic



Question: How was this data collected?
Answer (from S. Süsstrunk):
Psychophysical experiments with color-blind subjects https://www.sciencedirect.com/science/article/pii/ S0042698900000213

## Reminder: Sensitivity to Different Wavelengths

Stockman and Sharpe 2 degree Cone fundamentals: $\mathrm{L}, \mathrm{M}$, and S cones


Question: What do S, M, L stand for?
Answer: Short, Medium, Long wavelengths

## Reminder: Visual Cortex



The camera replaces the eye:

- Eye lens -> Camera optics
- Cones and rods -> Sensor array
- Ganglion cells -> Filter banks

The computer replaces the brain:

## But how?

EPFL

## Image Formation

## Sensor characteristics

Light source properties


## Analog Images



An image can be understood as a 2D light intensity function $f(x, y)$ where:

- $x$ and $y$ are spatial coordinates
- $f(x, y)$ is proportional to the brightness or gray value of the image at that point.
$\rightarrow$ Cannot be stored as such on a digital computer.


## Digital Images



136134161159163168171173173171166159157155 152145136130151149151154158161163163159151 145149149145140133145143145145145146148148 148143141145145145141136136135135136135133 131131129129133136140142142138130128126120 115111108106106110120130137142144141129123 117109098094094094100110125136141147147145 136124116105096096100107116131141147150152 152152137124113108105108117129139150157159
159157157159135121120120121 安 136147158163 159157157159135121120120121128136147158163
165165163163163166136131135138140145154163 166168170168166168170173145143147148152159 168173173175173171170173177178151151153156 161170176177177179176174174176177179155157 161162168176180180180182180175175178180180

A digitized image is one in which:

- Spatial and grayscale values have been made discrete.
- Intensities measured across a regularly spaced grid in $x$ and $y$ directions are sampled to
- 8 bits ( 256 values) per point for grayscale,
- $3 \times 8$ bits per point for color images.

They are stored as two-dimensional arrays of gray-level values. The array elements are called pixels and identified by their $x, y$ coordinates.

## Grayscale Images



136134161159163168171173173171166159157155 152145136130151149151154158161163163159151 145149149145140133145143145145145146148148 148143141145145145141136136135135136135133 131131129129133136140142142138130128126120 115111108106106110120130137142144141129123 117109098094094094100110125136141147147145 136124116105096096100107116131141147150152 152152137124113108105108117129139150157159 1591571571591351211201201211 2t 136147158163 165165163163163166136131135138140145154163 166168170168166168170173145143147148152159 168173173175173171170173177178151151153156 161170176177177179176174174176177179155157 161162168176180180180182180175175178180180

## Color Images



A color image is often represented by three 8-bit images, one for red, one for green, and one for blue.

## Image Formation



Projection from surfaces to 2-D sensor.

- Where: Geometry
- How bright: Radiometry
- Stored how: Sensing


## Pinhole Camera Model



Idealized model of the perspective projection:

- All rays go through a hole and form a pencil of lines.
- The hole acts as a ray selector that allows an inverted image to form.
EPFL


## Escher's Belvedere



## Magnet Like Slopes



Impossible Slopes by Kokichi Sugihara

## Virtual Image

image plane


- The real image forms on the image plane and is inverted.
- Let us consider a virtual plane in front of the camera.
- On this plane, we have a virtual non-inverted image.
—> It is simpler to reason in terms of that virtual image.


## Camera Geometry



From now on, we will use this formalism.

## Coordinate Systems



$$
\left(X_{c}, Y_{c}, Z_{c}\right)
$$

Image Coordinate System:

$$
\left(X_{i}, Y_{i}, Z_{i}\right)
$$

World Coordinate System:

$$
\left(X_{w}, Y_{w}, Z_{w}\right)
$$

## Camera Coordinate System

- The center of the projection coincides with the origin of the world.
- The camera axis (optical axis) is aligned with the world's $z$-axis.
- To avoid image inversion, the image plane is in front of the center of projection.


## 1D Image




## 2D Image



$$
\begin{aligned}
& x_{i}=f \frac{x_{c}}{z_{c}} \\
& y_{i}=f \frac{y_{c}}{z_{c}}
\end{aligned}
$$

We dropped the distinction between $\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)$ and $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$.

## Distant Objects Appear Smaller



The green and red objects are of the same size but the red one is farther and therefore its projection smaller.


Because the car at the back has the same size in projection, we perceive it as being larger.

## Projected Parallel Lines Meet



- Their intersection is referred to as the vanishing point.
- There is one per set of parallel 3D lines with the same direction vector.


## Vanishing Points



The projections of parallel lines all meet at one point, called the vanishing point.

- As the focal length increases, the vanishing point moves towards infinity.


## Leaning Towers



The two images are the same!
EPFL

## Leaning Towers Explained?



There are two different vanishing points. Hence, the two towers EPFL are not perceived as being parallel.

## Road Following



The vanishing point can be computed and used to direct an autonomous car.

## Effect of Focal Length on Faces



- Professional portrait: From 85 to 100.
- Typical phone camera: From 24 to 35.


## Projection is Non Linear


$\rightarrow$ Reformulate it as a linear operation using homogeneous coordinates.

## Homogeneous Coordinates

- Homogeneous representation of 2D point:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \text { represents }\left(x_{1} / x_{3}, x_{2} / x_{3}\right)
$$

- Homogeneous representation of 3D point:
$\mathbf{X}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ represents $\left(x_{1} / x_{4}, x_{2} / x_{4}, x_{3} / x_{4}\right)$


## - Scale invariance:

 $\mathbf{X}$ and $\mid \mathbf{X}$ represent the same point, same for $\mathbf{x}$ and $\mid \mathbf{x}$.
## Simple Projection Matrix

## 2D point expressed in projective coordinates.

## Let us write:

Let us write:
$\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{llll}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}X_{c} \\ Y_{c} \\ Z_{c} \\ 1\end{array}\right]$

$$
=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]
$$

- $[x, y, z]^{T}$ represents

$$
\begin{aligned}
X_{i} & =\frac{x}{z}=f \frac{X_{c}}{Z_{c}} \\
Y_{i} & =\frac{y}{z}=f \frac{Y_{c}}{Z_{c}}
\end{aligned}
$$

- Therefore $[x, y, z]^{T}$ is the projection of $\left[X_{c}, Y_{c}, Z_{c}, 1\right]^{T}$.

EPFL
-> We have expressed the projection of a 3D point as the multiplication of its projective coordinates by a projection matrix.

## Intrinsic And Extrinsic Parameters

$\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}\text { Matrix of } \\ \text { intrinsic parameters }\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\text { Matrix of } \\ \text { extrinsic parameters }\end{array}\right]\left[\begin{array}{c}\mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z} \\ 1\end{array}\right]$

- Camera may not be at the origin, looking down the z -axis
$\rightarrow$ Extrinsic parameters
- One unit in image coordinates may not be the same as one unit in world coordinates
$\rightarrow$ Intrinsic parameters


## Complete Linear Camera Model

## 2D point expressed in

 projective coordinatesand in pixels.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
\text { Matrix of } \\
\text { intrinsic parameters }
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\text { Matrix of } \\
\text { extrinsic parameters }
\end{array}\right]\left[\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z} \\
1
\end{array}\right]} \\
& =\mathbf{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{R t}\left[\begin{array}{c}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z} \\
1
\end{array}\right] \\
& \text { where } \mathbf{K} \text { is a } 3 \times 3 \text { matrix and Rt a } 4 \times 4 \text { matrix. } \\
& \begin{array}{c}
\text { 3D point expressed in } \\
\text { projective coordinates } \\
\text { using the world } \\
\text { coordinate system. }
\end{array}
\end{aligned}
$$

## Matrix of Extrinsic Parameters

It converts world coordinates into camera coordinates:

$\rightarrow$ Rotations and translations also expressed in terms of matrix multiplications in projective space.

## Matrix of Intrinsic Parameters

It converts image coordinates into pixels:



$$
\begin{aligned}
u & =X_{i}+p_{u}=f X / Z+p_{u} \\
v & =Y_{i}+p_{v}=f Y / Z+p_{v} \\
\mathbf{K} & =\left[\begin{array}{ccc}
f & 0 & p_{u} \\
0 & f & p_{v} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Principal point: p

## Matrix of Intrinsic Parameters

It converts image coordinates into pixels:

$$
\begin{aligned}
u & =\alpha_{u} X_{i}+p_{u}=\alpha_{u} X / Z+p_{u} \\
v & =\alpha_{v} Y_{i}+p_{v}=\alpha_{v} Y / Z+p_{v} \\
\mathbf{K} & =\left[\begin{array}{ccc}
\alpha_{u} & 0 & p_{u} \\
0 & \alpha_{v} & p_{v} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The pixels are not necessarily square, must account for different scaling in $x$ and $y$.

## Matrix of Intrinsic Parameters

It converts image coordinates into pixels:

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{u} & \mathrm{~s} & p_{u} \\
0 & \alpha_{v} & p_{v} \\
0 & 0 & 1
\end{array}\right]
$$

s encodes the non-orthogonality of the $u$ and $v$ directions. It is very close to zero in modern cameras.

## Putting it All Together



## Another Way to Write the Projection Matrix



- In projective geometry, I $\mathbf{x}=\mathbf{x}$. Therefore the matrix $\mathbf{P}$ can always be rescaled so that its last element is one.
- The $3 \times 4$ matrix $\mathbf{P}$ has 11 degrees of freedom.


## Camera Calibration

## Internal Parameters:

- Horizontal and vertical scaling (2)
- Principal points (2)
- Skew of the axis (1)

External Parameters:

- Rotations (3)
- Translations (3)
$\rightarrow$ There are 11 free parameters to estimate. This is known as calibrating the camera.


## Calibration Grid



One way to calibrate: Take a picture of a calibration grid. EPFL

## Estimating the Camera Parameters

- Number of measurements required:
- 11 degrees of freedom.
- 2 constraints per correspondence.
- Direct linear transform:
- Minimal solution for 6 correspondences
- Over-constrained solutions by imposing

$$
\text { For all } \mathrm{i}, \mathbf{x}_{\mathrm{i}}=\mathbf{P} \mathbf{X}_{\mathrm{i}} \text {, with }\|\mathbb{P}\|=1 \text { or } \mathrm{P}_{34}=1
$$

- Non linear optimization.


## Martian Calibration



## Limitations of the Pinhole Model



Idealization because the hole cannot be infinitely small

- Image would be infinitely dim
- Diffraction effects
$\rightarrow$ Use a lens to overcome this problem.


## Imaging With a Lens


$P$ : point emitting light in all directions.

Image plane

An ideal lens performs the same projection as a pinhole but gathers much more light!

## Thin Lens Properties



Image plane

- An incident ray that passes through the center of the lens will in effect continue in the direction it had when it entered the lens.
- Any incident ray traveling parallel to the optical axis, will refract and travel through the focal point on the opposite side of the lens.
- Any incident ray traveling through the focal point on the way to the lens will be refracted and travel parallel to the principal axis.
- All rays emanating from $P$ and entering the lens will converge at EPFL


## Camera Obscura



- Used by painters since the Renaissance to produce perspective projections.
- Direct ancestors to the first film cameras.


## Optional

## Durer 1471-1528



- He clearly knew all about the perspective transform!


## Optional

## Shifting Perspective

China, 8th century:
-The focal point moves from one part of the image to the other.
-The characters are always seen at eye-level as the picture is unrolled.

## Thin Lens Equation


$\rightarrow$ Lens with focal distance f equivalent to pinhole camera with similar focal distance but larger aperture.

## Aperture



- Diameter d=2a of the lens that is exposed to light.
- The image plane is not located exactly where the rays meet.
- The greater a, the more blur there will be.


## Blur Circle



The size of the blur circle is proportional to the aperture.

## Depth of Field



- Range of object distances (d-d') over which the image is sufficiently well focused.
- Range for which blur circle is less than the resolution of the sensor.
Small focal length —> Large depth of field. $E P F L$


## Proof



- Simple geometry:

$$
r_{b}=\frac{a}{s^{\prime}}\left|s-s^{\prime}\right|
$$

- Thin lens equation:

$$
\begin{aligned}
& \frac{1}{d}+\frac{1}{s}=\frac{1}{f} \Rightarrow s=\frac{d f}{d-f} \\
& \frac{1}{d^{\prime}}+\frac{1}{s^{\prime}}=\frac{1}{f} \Rightarrow s^{\prime}=\frac{d^{\prime} f}{d^{\prime}-f}
\end{aligned}
$$

$$
\begin{aligned}
s^{\prime}-s & =\frac{f}{d-f} \frac{f}{d^{\prime}-f}\left(d-d^{\prime}\right) \\
r_{b} & =\frac{a f^{2}}{s^{\prime}}\left|\frac{\left(d-d^{\prime}\right)}{(d-f)\left(d^{\prime}-f\right)}\right|
\end{aligned}
$$

## Changing the Focal Length



Wide field of view (small f): Large depth of field.


Narrow field of view (large f): Small depth of field.

$$
r_{b} \propto \frac{a f^{2}}{s^{\prime}}
$$

## Changing Aperture



Small aperture, long exposure: Large depth of field.

f/2.8
1/500sec
Large aperture, short exposure: Small depth of field.

$$
r_{b} \propto \frac{a f^{2}}{s^{\prime}}
$$

Small a $\longrightarrow$ Small $\mathrm{r}_{\mathrm{b}}$

## Distortions



The lens is not exactly a "thin lens:"

- Different wave lengths are refracted differently,
- Barrel Distortion.


## Chromatic Aberration



Different wavelengths are refracted differently.

## Radial Lens Distortion



No Distortion


Barrel Distortion


Pincushion Distortion

The distortion is a function of radial distance to the image center:

$$
r_{u}=r_{d}\left(1+k_{1} r^{2}+k_{2} r^{4}+\ldots\right)
$$

- $r_{d}$ : Observed distance of the projected point to the center.
- $r_{u}$ : Distance of the point to the center in an image without distortions.


## Lens Systems



Aberrations can be minimized by aligning several lenses with well chosen

- Shapes,
- Refraction indices.

EPFL

## Undistorting



Real image


Synthetic image
-> Create the synthetic image a sense without distortion would have produced.
EPFL

## Undistorting



Once the image is undistorted, the camera projection can be formulated as a projective transform.
$\rightarrow \quad$ The pinhole camera model applies. EPFL

## Fundamental Radiometric Equation



Scene Radiance (Rad) : Amount of light radiation emitted from a surface point (Watt / m2 / Steradian).

Image Irradiance (Irr): Amount of light incident at the image of the surface point (Watt / m2).

$$
\begin{aligned}
\operatorname{Irr} & =\frac{\pi}{4}\left(\frac{d}{f}\right)^{2} \cos ^{4}(\alpha) \text { Rad }, \\
\Rightarrow \operatorname{Irr} & \propto \text { Rad for small values of } \alpha .
\end{aligned}
$$

## Vignetting



Images can get darker towards their edges because some of the light does not go through all the lenses.

## De Vignetting


$\rightarrow$ As for geometric undistortion, undo vignetting to create an image that an ideal camera would have produced.

## Sensor Array



Photons free up electrons that are then captured by a potential well.

Charges are transferred row by row wise to a register.

Pixel values are read from the register.

## Sensing



Conversion of the "optical image" into an "electrical image":

$$
\begin{aligned}
& E(x, y)=\int_{t_{0}}^{t_{1}} \int_{0}^{\Lambda} \operatorname{Irr}(x, y, t, \lambda) s(\lambda) d t d \lambda \\
& I(m, n)=\operatorname{Quantize}\left(\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}} E(x, y) d x d y\right)
\end{aligned}
$$

$\rightarrow$ Quantization in

- Time
- Space


## EABSOMS

INCIDENT LIGHT


## CCD

-Charged Coupling Devices (CCD): Made through a special manufacturing process that allows the conversion from light to signal to take place in the chip without distortion. -Complimentary Metal Oxide Semiconductor (CMOS): Easier to produce and similar quality. Now used in most cameras except when quantum efficient pixels are needed, e.g. for astronomy.

## In Short

- Camera geometry can be modeled in terms of the pinhole camera model, which is linear in projective space.
- Image radiance is roughly proportional to surface radiance and the two can be used interchangeably for our purposes.

