
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL  

from brain-style computing to neuromorphic computing

Objectives for today:

- application of three-factor rules

- local learning rules for hardware

- Spiking Neural Networks (SNN)

- neuromorphic chips

- reducing energy consumption 



Previous slide.  We continue our discussion from last week

Background reading:

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic devices and systems, 

IEEE Xplore, https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)

https://en.wikichip.org/wiki/intel/loihi

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Implementation of Navigation task with Memristors

https://doi.org/10.1038/s41467-023-37097-5

IBM research lab

Fremaux et al,. 2013,  PLOS Comput. Biol.  

doi:10.1371/journal.pcbi.1003024

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf


brain 

Distributed Architecture

10 billions neurons

memory in the connections

10 000   connexions/neurons

10 000 neurons

3 km of wire
1mm

1mm

Review: Neurons and Synapses form a big network

No separation of 

processing and memory

non-von-Neumann

computing &hardware

‘brain-style computing’



Previous slide.  Review from previous lectures. 

In the first lecture it was mentioned that the brain is radically different from the 

classical von-Neumann architecture that lead to our standard compute devises.

Particularly important differences are that the brain-style computing architecture is 

completely distributed, without centralized clock, no centralized controller and no 

separation of computing and memory.

We take in the following the learning rules of RL as a starting point of what this 

means and mention at the end novel hardware.



brain algorithms

non-von-Neumann

computing &hardware

‘brain-style computing’

Review: Learning Rules of Reinforcement Learning  



Previous slide.  Review from previous lectures. 

RL has two roots: optimization and Markov Decision Problems and Brain 

sciences.

We take in the following the learning rules of RL to see how they lead to 

alternative computing paradigms.



Review: Advantage Actor-Critic  with Eligibility traces   

Adapted from

Sutton and Barto

r
r + g

The algo for the update 

is the  ‘learning rule’. 



Previous slide.  Review from previous lectures. 

Red box:

Parameters in the advantage actor critic change proportional to

- The TD error delta

- Eligibility trace.

In turn, eligibility traces change proportional to

- The derivative of the value function for the critic

- The derivative of the log policy for the actor

- A decay term

In the example today eligibility traces are important.



‘learning rule’

of Advantage

Actor-Critic

with eligibility trace

 Learning rules of other ONLINE RL policy gradient models 

are special cases of (1).

We take (1) as a starting point to discuss the relation 

with the brain and with hardware 

(1)

Can such a learning rule be implemented in the brain?

Can such a learning rule be implemented in hardware?

Review: Learning Rules of Reinforcement Learning  



Previous slide.  Review from  previous lecture.

In the following we take the Advantage Actor Critic as our Reference Model. 

As we have seen earlier, other Algorithms in the Family of Policy Gradients can 

be identified as special cases. 

Last week we have seen how such a learning rule (update algorithm) be 

implemented in the brain. 

In this lecture we ask: how could an implementation of the actor-critic look like in 

the brain? And in hardware?



brain algorithms

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible

with three-factor rules 

Updates proportional to the reward r or TD error 𝛿𝑡

D𝑤𝑙𝑘= h  𝑟𝑡 𝑧𝑙𝑘
D𝑤𝑙𝑘= h  𝛿𝑡 𝑧𝑙𝑘

Review: Learning Rules of Reinforcement Learning  

Change of all weights

𝑧𝑙𝑘 ← 𝑧𝑙𝑘𝜆𝑧

Update of all eligibility traces 

𝑧𝑙𝑘 ← 𝑧𝑙𝑘 +
𝑑

𝑑𝑤𝑙𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑙𝑘)]



Previous slides. 

Review of algorithm with actor-critic architecture with eligibility traces.

The Advantage actor critic has parameter updates proportional to the TD error.

Reinforce/policy gradient has updates proportional to the momentary reward.

Apart from this difference, the overall structure of the two algorithms is very 

similar. 



brain algorithms

The learning rule of the advantage actor-critic

with eligibility traces

is consistent with a brain-like three-factor rule

Dopamine in the brain broadcasts TD signal!

D𝑤𝑙𝑘= h  𝛿𝑡 𝑧𝑙𝑘

TD signal

[r+g V(s’)-V(s)]

Review: Learning Rules of Reinforcement Learning  



Previous slide. Review

In the Advantage Actor Critic the learning signal (third factor) is the TD error.

It turns out that dopamine in the brain has a signature that is reminiscent of a TD 

signal (as shown last week). Dopamine can be seen as a (near-)global third 

factor.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN) 



Previous slide:

As we have seen in the previous lecture, neurons in the brain communicate by short pulses (spikes, also 

called action potentials).

How can we model Spiking Neural Networks (SNNs)? 

The standard model of s single Spiking Neuron is the leaky integrate-and-fire model (LIF).

In the community of computational neuroscience it is usually written in continuous time.

For computer science applications, it is usually written in discrete time.

We show both versions. But first we review some biological information about spikes.



brain 

electrode

Crochet et al., 2011

awake mouse, cortex, freely whisking, 

electrode to measure a single neuron 

in the brain of a mouse  ‘in vivo’.

- mouse has no specific task, 

- no stimulus given

- spikes are ‘rare’

spike train recorded in the brain

Lab of Prof. C. Petersen, EPFL



Previous slide.

Neurons have a voltage, sometimes called the membrane potential u.

The image shows the voltage measurements of a single neuron over several 

seconds.  We observe:

1) Occasionally there are spikes (large, but very short voltage peaks)

2) The interval between spikes is long (e.g., no spike for the first 3.5 seconds)



Review: The brain uses signal transmission by spikes

action

potential 

More than 1000 inputs 

Signal: 

action potential (short pulse), called ‘spike’



Previous slide. Review from Lecture 0

Signals are transmitted along wires (called axons). These wires branch out to 

make contacts with many other neurons.

Each neuron in cortex receives several thousands of wires from other neurons 

that end in ‘synapses’ (contact points) on the dendritic tree.



u


pulse

synapse t

Review: neurons sum their inputs



Previous slide. Review from Lecture 1

If a spike arrives at one of the synapses, it causes a measurable response in the 

receiving neuron.

If several spikes arrive shortly after each other onto the same receiving neuron, 

the responses add up.

If the summed response reaches a threshold value, this neuron in turn sends out 

a spike to yet other neurons (and sometimes back to the neurons from which it 

received a spike).



Review: modeling of spiking neurons

u


pulse

-responses are added

-pulses created at threshold

-transmitted to other

-pulses are ‘unitary events’: shape of spike irrelevant

response

synapse t

Mathematical description:

Integrate-and-fire neuron



Previous slide.

The fact that responses are added and then compared with a threshold is an 

aspect that is shared between real neurons, integrate-and-fire neurons, and 

artificial neurons in ANNs. 

This is the essential ideal that we keep for the abstract mathematical model in the 

following.

Note that spikes are formal events – their duration can be reduced to zero. What 

matters is the fact whether a pulse is transmitted, yes or no.



i



note spike+reset to

linear

threshold

Spike emission

resetI

j

Spiking Neural Network – Leaky Integrate-and-Fire Model
(continuous time formulation)

Ii t =  𝑗𝑤𝑖𝑗 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

𝑢 𝑡 = 0

𝜏𝑚
𝑑
𝑑𝑡
𝑢𝑖 = −𝑢𝑖 𝑡 + 𝐼𝑖 𝑡

𝑢𝑖 𝑡 = 𝜗if

𝑢𝑖



Previous slide: 

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that 

can be interpreted as an electrical RC circuit charged by a current I(t). This current I(t) consists of short 

electrical pulses that present spike arrivals. The 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

denotes the Dirac delta function for each presynaptic spike arrival at times 𝑡𝑗
𝑝𝑟𝑒

and 𝑤𝑖𝑗 are the weights. We 

can interpret  𝑤𝑖𝑗 as the charge delivered by the current pulse at time 𝑡𝑗
𝑝𝑟𝑒

.

The linear equation is combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant 

𝜏 = 𝑅𝐶 . Therefore after each short current pulse, the voltage  (membrane potential) decays 

exponentially back to zero with time constant 𝜏 = 𝑅𝐶 .



i



fire+reset

linear, voltage jump

threshold 

Spike emission

resetI

j

Spiking Neural Network – Leaky Integrate-and-Fire Model

𝑢𝑖 ← 0

D𝑢𝑖 = 𝑤𝑖𝑗 𝑖𝑓 𝑡 = 𝑡𝑗
𝑝𝑟𝑒

𝑖𝑓 𝑢𝑖 = 𝜗

(discrete time formulation)

𝑢𝑖 ← 𝝀𝒎𝑢𝑖

𝜆𝑚

discrete time steps

linear, decay with parameter 𝝀𝒎

𝑢𝑖



Previous slide:

The Leaky integrate-and-fire model written in  discrete time (say time step Δ𝑡 = 1ms) 

has two linear update steps: 

- each presynaptic spike causes a jump of the voltage (membrane potential) by the synaptic weight 𝑤𝑖𝑗.

- In each time step the membrane potential decays with a factor 𝜆𝑚<1. (Asice: If we compare with the 

previous equation in continuous time, we find that the factor is 𝜆𝑚 = 1 −
Δ𝑡

𝜏𝑚
where Δ𝑡 is the time step.)

These linear update steps are combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.



How good are integrate-and-fire models?

- real neuron: thick line

duration of spike about 1 ms

- integrate-and-fire model: thin line

duration of spike reduced to 0ms

followed by reset of u

interspike-interval



Previous slide:

We can compare the membrane potential (voltage u) of a real neuron with that of an integrate-and-fire 

neuron for time-dependent input current. The same current drives either the real neuron, or the integrate-

and-fire neuron.

After optimization of parameters, the similarity is striking.

The LIF misses a few spikes, and also puts a few extra spikes. 

For the LIF spike times  are defined by the threshold crossing. The spike time is marked for visualization by a 

short vertical bar. After the spike the membrane potential is reset to a lower value.



Review: Modeling of  artificial neurons

forget spikes: continuous activity x

forget time: discrete updates

𝑥𝑖 = 𝑔  

𝑘

𝑤𝑖𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘

weights =

adaptive

parametersactivity of inputs

activity of output

nonlinearity/threshold

total input

g(total input) ReLU

output g = spikes per second

(firing rate)

leaky integrate-and-fire (LIF)

LIF



Previous slide.

The activity of inputs (or input neurons) is denoted by 𝑥𝑘

The weight of a synapse is denoted by  𝑤𝑖𝑘

The nonlinearity (or threshold function) is denoted by 𝑔 (could be a ReLU)

The output of the receiving neuron is given by

The output for a leaky integrate-and-fire (LIF) neurons can be defined as the firing 

rate (number of spikes persecond).

The function g (firing rate for constant input) of a LIF is very similar to that of a 

ReLU.

𝑥𝑖 = 𝑔  

𝑘

𝑤𝑖𝑘 𝑥𝑘



The brain is a large recurrent network of spiking neurons

Active neuron = spike emission

- spikes are rare events

- only events are transmitted  low bandwith



Previous slide:

This slide has already been shown in the very first week. In a spiking neural network, most neurons are most 

of the time silent. Spikes are rare events.

This is exploited in spiking hardware. 



Spiking Neural Networks

- spikes are rare binary events (yes/no)

- only events are transmitted  low bandwith

Typical time scales in the brain:

- spike transmission time                        1ms

- spike duration                                       1ms 

- rise time of postsynaptic potential        1ms

- decay time of postsynaptic potential   10ms

- interspike interval (active neurons)    50ms

- interspike interval (resting state)      1000ms

- eligibility trace                                   1000ms

- update of synapses                         10000ms=       10s

- decay of synapses                                          >10 000s

Note:
Hardware could 

have a speed-up 

factor > 10 000, 

but respect the 

relative time 

scales. 



Previous slide:

Neuronal dynamics occurs on different time scales.

The fast processes are in the range of 1ms.

However, most neurons emit most of the times no spikes, since interspike intervals are in the range of 30ms 

to 3s. Hence spikes are rare events.

Consequence: transmission lines are rarely used.

But: the costly process is the transmission of the binary signal (spike) to thousands of other neurons. 

Therefore we can save energy if only a few spikes are transmitted.

This can potentially lead to a large reduction of energy consumption.



brain algorithms

non-von-Neumann

computing &hardware

Local Learning Rules, Spiking Neurons, 

Neuromorphic hardware



Previous slide:

The lecture last week covered the relation between learning rules used by the brain and those implemented 

in modern reinforcement learning algorithms.

This lecture will make the link to recent developments in modern neuromorphic computing architectures that 

are completely different than the class model of von-Neumann computing architectures.

One aspect is that these hardware approaches explore potential advantages of Spiking Neural Networks.

Another aspect is that they rely on local learning rules, in particular three-factor rules.

A third aspect is that they could potentially reduce energy consumption.

This lecture today provides  an outlook onto current developments for specialized, bio-inspired chips that will 

eventually use much less energy than conventional chips. The category of chips is often called neuromorphic 

chips since they take inspiration from biological principles in neuroscience.

In particular, they use communication with spiking neurons and local learning rules.



Review: Policy Gradient as three-factor rule

Stimulus

Change depends on pre and post

Two factors: eligibility trace proportional to post times  pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

success

𝑎𝑖
𝑡 − 𝑎𝑖  𝑥 𝑥𝑗 − 𝝀𝒛𝑧𝑖𝑗D𝑧𝑖𝑗 =

pre- = sending neuron

post = receiving neuron

synapse=

connection

D𝑤𝑖𝑗 =h  

Third factor: TD-error ( success )

𝛿𝑇 𝑧𝑖𝑗
linear decay with

parameter 𝝀𝒛

variable     = eligibility zij

parameter = weight wij



Previous slide:

We have found that the update of weights of the actor in the output layer can be written as a three-factor 

learning rule:

- The presynaptic factor and the postsynaptic factor define the eligibility trace and there select the  

connection weight that is updated (pre and post are the two local factors).

- The third factor is global (independent of neuronal indices) and signals success.

- Success can be reward or the TD error (for the advantage actor-critic).



Review:  Coincidence detection  rule of STDP

Xie and Seung 2003,, Izhikevich, 2007;  Florian, 

2007;  Legenstein et al., 2008,

Fremaux et al. 2010, 2013

Hebb rule/eligibility trace

Success signal

success

Success signal:

TD error 

post

i

pre

j

STDP condition

10 ms

Eligibility trace:

Weight

D𝑧𝑖𝑗 > 0 𝑖𝑓
′STDP − condition′

D𝑤𝑖𝑗 = 𝑧𝑖𝑗 𝑆

),,( SUCCESSpostpreFwij D



Previous slide:

A specific biologically plausible three-factor rule with eligibility traces would be the following:

- Spike-Timing-Dependent Plasticity (STDP) picks up coincidences between pre and postsynaptic spikes on 

a time scale of 10 milliseconds. STDP is hence a spike-based version of Hebbian learning. 

- If furthermore the success signal arrives within one second, then the weight is updated.



‘traces’ for STDP: how to implement Hebb with spikes

pre               

j

post
i

ijw

pre

jt

post

it

pre-before-post

𝑥𝑗 ← l+ 𝑥𝑗

𝑥𝑗

D𝑥𝑗 = 1 𝑖𝑓 𝑡 = 𝑡𝑗
𝑝𝑟𝑒

(i) Trace left by presynaptic spike (discrete time steps of 1ms):

(ii) Update of eligibility trace at moment of postsynaptic spike

D𝑧𝑖𝑗 = 𝑥𝑗 𝑖𝑓 𝑡 = 𝑡𝑖
𝑝𝑜𝑠𝑡

𝑧𝑖𝑗 ← l𝑧 𝑧𝑖𝑗
(iii) Update of weights prop to eligibility trace and Success S

5 ms

Simple STDP model
(Gerstner et al. 1996,

Song-Miller-Abbott 2000, etc)

STDP condition

pre-before-post

10 ms

D𝑤𝑖𝑗 = 𝑧𝑖𝑗 𝑆

decays over 10ms

decays over 1000ms

decays never (or over days)



Previous slide:

𝜏+ = 1/𝜆+
- For example, the pre-before-post ‘HEBB’ condition can be implemented by saying that the presynaptic 

spike leaves an exponential trace (decaying with a time constant 𝜏+ = 1/𝜆+ of 10 millisecond); if the 

postsynaptic spike arrives a few milliseconds afterwards, it sets an eligibility trace that is proportional to 

the value of the presynaptic trace.

- The eligibility trace decays on slower time scale (time scale t=1/lz= 1 second).

- If  the success signal arrives within one second, then the weight is updated.

- We can consider a special case (all time scales are the same discrete time step):

If (i) the eligibility trace has a time constant of  𝜏+ = 1/𝜆+ 10ms

(ii) the Hebbian STDP condition is one-sided with a time scale of 10ms

(iii) the discrete time step is 10ms,

then the three-factor STDP is very similar to the

three-factor policy gradient rule 

- A two-sided STDP condition (plus for pre-before post and 

minus for post-before-pre)  can be implemented by stating that the 

postsynaptic spike leaves another trace (postsynaptic trace) which 

leads to a negative updated of the eligibility trace  at the moment of 

the next presynaptic spike arrival.

STDP condition: pre-before post

10 ms



Review: Three-factor rules with eligibility trace

D𝑧𝑖𝑗 =h  𝑓(𝜑𝑖) 𝑔(𝑥𝑗) 

𝑀 𝑆  𝜑,  𝑥 𝑧𝑖𝑗

pre

post
ij

Success signal

𝑀(𝑆  𝜑,  𝑥 )𝑥𝑗 = activity-trace left by of presynaptic neuron

𝜑𝑖 = activity-trace left by of postsynaptic neuron

D𝑤𝑖𝑗 =h

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← 𝜆𝑧𝑧𝑖𝑗
Step 3: eligibility trace translated into weight change

Three-factor rule defines a framework



Previous slide:

There are many different Hebbian rules or STDP rules. Similarly, there is not a single three-factor rule. 

Rather three-factor rules are a framework formulated as follows:

- The trace left by presynaptic activity contributes some nonlinear factor  𝑔(𝑥𝑗) 

- The trace left by postsynaptic activity contributes some nonlinear factor 𝑓(𝜑𝑖) 

- The eligibility trace 𝑒𝑖𝑗 is changed proportional to the two factors f times g

- The eligibility trace decays by a factor 𝜆𝑧 corresponding to a time scale of about one second 

- Weights are updates proportional to eligibility trace 𝑒𝑖𝑗 times M with a modulator M that is a nonlinear 

function of the success S. The modulator is the ‘third factor’ in the update rule.

- The modulator M adjusts not only the learning speed but also the direction of change. In other words, the 

sign of the update  (increase/decrease) depends on the sign of M.

𝜆𝑧



Three- factor Learning Rules and Spiking Neurons 

[ ] STDP is an acronym for Spike-Timing-Dependent Plasticity

[ ] Spikes are pulses that last less than 10ms 

[ ] A spike of a presynaptic neuron that arrives  5ms    

before a postsynaptic one sets leaves a  ‘trace’ for a few ms

[ ] The eligibility trace of three-factor rules lasts for 

at least 10 minutes

[ ] Neurons in the brain exhibit interspike-intervals that are 

rarely longer than 50ms 

[x]

[ ]

[x]

[ ]

[ ] 



brain algorithms

non-von-Neumann

computing &hardware

Three- factor Learning Rules and Spiking Neurons 

Summary:
- Neurons communicate 

by short pulses

- Pulses last 1ms

- Pulses are rare events

- A pulse timing pre-

before-post (within 

20ms) sets an eligibility 

trace

- The eligibility trace 

decay over 1s

- Dopamine, a global 

neuromodulator, sends a 

TD signal 



The 80-percent question again:

[ ] Today, up to here, for the 3-factor framework 

and Spiking Neural Networks have the feeling that   

I understood at least 80 percent of the material



Previous slide:

After this introduction to spiking neurons, and  review of three-factor rules, we make a small detour to an 

application that you have seen already at several occasions.

And then we are  prepared to look at the first hardware implementation.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

- What is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented



Previous slide. 

We said that the three factor rule, dopamine, TD signals, value functions now all 

fit together. Let’s apply this to the problem of navigation in a maze.

For biological plausibility we have to consider:

- Representation of states

- Representation of actions

- Representation of TD signal and learning rule



- What is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented

Example of modeling for biology: Navigation

Big Question: Do we need an ‘exact’ actor-critic update rule?  

- can we replace softmax by something else?

- can we replace condition for ‘coincidence’ pre-post

by something else?

- can we replace TD-error by something else?

- can we work with spiking neurons?

Use three-factor rule  as a framework for learning



Previous slide. 

Can we work with spiking neurons and solve a biological RL task using 

components that look ‘plausible’?



Review: TASK = conditioning in the Morris Water Maze

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Behvioral experiment in the Morris Water Maze.

The water is milky so that the platform is visible.

After a few trials the rat swims directly to the platform



Review: Representation of momentary state: hippocampus

fig: Wikipedia

Henry Gray (1918) Anatomy of the Human Body

Hippocampus

- Sits below/part of temporal cortex

- Involved in memory

- Involved in spatial memory

Spatial memory:

knowing where you are,

knowing how to navigate in an environment

https://en.wikipedia.org/wiki/Henry_Gray


Previous slide. 

the problem of navigation needs the spatical representation of the hippocampus.



rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

6. Representation of states: Place cells  in rat hippocampus 



Previous slide. 

the hippocampus of rodents (rats or mice) looks somewhat different to that of 

humans. Importantly, cells in hippocampus of rodents respond only in a small 

region of the environment. For this reason they are called place cells. The small 

region is called the place field of the cell.



Main property: encoding the animal’s location

place 

field

6. Representation of states: Hippocampal place cells  



Previous slide. 

Left: experimentally measured place field of a single cell in hippocampus.

Right: computer animation of place field



6. Representation of actions: Ring of spiking actor neurons

Mexican-hat interaction :

- Local excitation

- Long-range inhibition

 Bump of activity at arbitrary location. 

𝑤𝑖𝑗 = 𝐹( 𝑖 − 𝑗 )



Previous slide. 

Mexican-hat is a widely used interaction scheme.

Neighboring neurons (within some distance) excite each other, while far-away 

neurons inhibit each other. The connectivity pattern is translation invariant. 

If the excitatory interactions are strong enough, then a localized group of neurons 

fires with high activity while all other neurons are inactivity. Importantly, the bump 

of activity can sit at an arbitrary location. The location can be influenced by input 

from a previous layer of neurons.

In our application, the location of the bump indicates the momentary action of 

movement.



6. Representation of actions: Ring of spiking actor neurons

Note: no need to formally define a softmax function

Fremaux et al. (2013)

- Local excitation

- Long-range inhibition

- Not a formal softmax

- Could be a model

of action selection

in striatum



6. Ring of actor neurons

Fremaux et al. (2013)

Actor neurons (previous slide). 

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory, 

red: inhibitory) embodies the agent’s policy (top). 

B: Lateral connectivity. Each neuron codes for a distinct motion direction. 

Neurons form excitatory synapses to similarly tuned neurons and

inhibitory synapses to other neurons. 

C: Activity of actor neurons during an example trial. The activity of the 

neurons (vertical axis) is shown as a color map against time (horizontal 

axis). The lateral connectivity ensures that there is a single bump of activity 

at every moment in time. The black line shows the direction of motion (right 

axis; arrows in panel B) chosen as a result of the neural activity. 

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

.



6. Representation of Learning rule:  Spikes + Eligibility trace

Fremaux et al. (2013)

success

post

pre

j





6. Learning rule:  Three-factor STDP for reward-based learning              

Xie and Seung 2003, Izhikevich, 2007;  Florian, 

2007;  Legenstein et al., 2008,

Fremaux et al. 2010, 2013

Hebb rule/eligibility trace

Success signal

success

Success signal: 

TD error

post

i

pre

j

STDP

𝑑𝑤𝑖𝑗
𝑑𝑡
= 𝐹(𝑤𝑖𝑗; PRE𝑗 , POST𝑖 , 3𝑟𝑑)

10 ms

1s 𝑑𝑤𝑖𝑗
𝑑𝑡
= 𝑧𝑖𝑗 ⋅ 𝑆 𝑡

𝜏𝑧
𝑑𝑧𝑖𝑗
𝑑𝑡
= −𝑧𝑖𝑗 + 𝑆𝑇𝐷𝑃(𝑡𝑖

𝑓
− 𝑡𝑗
𝑓
)

𝑡𝑖
𝑓

𝑡𝑗
𝑓

pre-post-coincidence



6. Learning rule  with TD in Actor-Critic for spiking neurons

Fremaux et al. (2013)

Learning rule with three factors (previous slide) based on spikes

1. In biology, neurons communicate by spikes (short electrical pulses).

2. Synaptic changes depend on the relative timing of the spikes of the 

sending (pre) and the receiving (post) neuron: Spike-Timing-Dependent 

Plasticity (STDP). Strong changes occur only if pre- and postsynaptic spikes 

coincide within +/- 20 ms.

3. STDP is used to set the eligibility trace. The eligibility trace decays on a 

much slower time scale of 1s.

4. Un success signal is necessary to transform the eligibility trace into an 

actual weight change.

Therefore weights increase if a success signal occurs within roughly one 

second after a coincident activity of pre- and postsynaptic neuron.  



6. Two variants of spike-based three-factor  Learning rules

Fremaux et al. (2013)

10ms

10ms

1s

1s

Condition for 

setting synaptic 

trace: 10 ms

Decay of RL eligibility 

trace : 1s

pre

pre

post

post



6. Learning rule  with TD in Actor-Critic for spiking neurons

Fremaux et al. (2013)

A: Learning rule with three factors (previous slide). We consider two different 

variants

Top: TD-LTP is the learning rule resulting from policy gradient. It works by

passing the presynaptic spike train (factor 1) and the postsynaptic spike train

(factor 2) through a coincidence window e. Spikes are counted as

coincident if the postsynaptic spike occurs within after a few ms of a 

presynaptic spike. The result of the pre-post coincidence measure is low-

pass-filtered by passing it through a kernel (which yields the eligibility trace, 

decaying of 1s), and then multiplied by the TD error d(t) (factor 3) to yield the 

learning rule which controls the change  of the synaptic weight w_ ij .

Bottom: TD-STDP is closer to biology and consists of  a TD-modulated 

variant of STDP. The main difference with TD-LTP is the presence of a post-

before-pre component in the coincidence window. As before, coincidences

with 10ms set the eligibility trace



6. Maze Navigation  with TD in Actor-Critic with spiking neurons

R-max:

Policy gradient without

the critic. The goal was 

never found within 50s.

early trial

Late trial

value

map
TD-STDP:

After 25 trials, the goal 

was found within 20s. 



Maze navigation learning task. Both TD rules (TD-LTP and TD-STDP) work equally 

well. Hence, details of how the eligibility trace is set do not matter.

A: The maze consists of a square enclosure, with a circular goal area (green) in the 

center. A U-shaped obstacle (red) makes the task harder by forcing turns on 

trajectories from three out of the four possible starting locations (crosses). 

B: Color-coded trajectories of an example TD-LTP agent during the first 75 simulated 

trials. Early trials (blue) are spent exploring the maze and the obstacles, while later 

trials (green to red) exploit stereotypical behavior. 

C: Value map (color map) and policy (vector field) represented by the synaptic 

weights of the agent of panel B after 2000s simulated seconds. 

D: Goal reaching latency of agents using different learning rules. Latencies of N=100 

simulated agents per learning rule. The solid lines shows the median shaded area 

represents the 25th to 75th percentiles. The R-max learning rule is standard policy 

gradient agent without a critic and enters times-out after 50 seconds. Hence it is 

important that the 3rd factor is TD and not just ‘raw’ reward.

Fremaux et al. (2013)

6. Maze Navigation  with TD in Actor-Critic with spiking neurons



6. Acrobot task  with TD in Actor-Critic with spiking neurons

Fremaux et al. (2013)

success

post

pre

j



Previous slide. 

Application of the same model (spiking three-factor rule) to the Acrobot task.



6. TD in Actor-Critic with spiking neurons
- Learns in a few trials (assuming good representation)

- Works in continuous time. No artificial  ‘time steps’

- Works with spiking neurons

- Works in continuous space and for continuous actions

- Uses a biologically plausible 3-factor learning rule

- Details of coincidence condition (STDP/spike LTP) irrelvant

- Critic implements value function

- TD signal calculated by critic and broadcasted to network

- Actor neurons interact via synaptic connections

- No need for algorithmic ‘softmax’

- 3-factor rules with TD as global signal work much better 

than standard policy gradient (REINFORCE)

Fremaux et al. (2013)



Previous slide. 

Summary of findings



6. Summary Learning in the  Brain vs RL algo

Advantage Actor-Critic Reinforcement learning needs:

- states / sensory representation

- action selection

- value function/critic

- broadcast of TD error

- TD error calculation

brain algorithms



6. Summary

Several aspects of TD learning in an actor-critic framework

can be mapped to the brain:

Sensory representation: Hippocampal place cells 

(and Cortex)

Actor : Dorsal Striatum

Critic : Ventral Striatum (nucleus accumbens)

TD-signal: Dopamine

Three-factor rule! 

With spiking neurons!

Learning in about 10 epochs.



6. Summary

Several aspects of TD learning in an actor-critic framework

can be mapped to the brain:

State representation: Hippocampus (and Cortex)

Actor : Dorsal Striatum

Critic : Ventral Striatum (nucleus accumbens)

TD-signal: Dopamine

 But how can we learn the ‘state representation’

by ‘place cells/radial basis functions’?



REVIEW from Lecture RL3:  Continuous space in RL:

Self-localization and Navigation to Goal
- 2-dimensional arena 80cmx60cm 

- single goal location

- 120 actions (=directions of movement) 

Agent: 

Khepera Robot

Camera:

view

>240 000 pixel

Preprocessing:
Gabor filter bank

2400



Previous slide.

The camera of the Khepera robot takes snapshots in 4 directions that are combined into a 

single view covering a viewing field of  240 degree (total would be 360 degree).



- Preprocessing Gabor filter bank:

Filters of several spatial frequency and orientation

at 45 different locations.

- Snap-shot of environment =

if ‘novel’ store the vector 𝐹𝑗
of filter responses

- ‘Basis-function’                       

similarity of current view 𝐹(𝑡) with stored view vector 𝐹𝑗
after rotation to optimal matching angle

-

𝜙 𝐹(𝑡) − 𝐹𝑗

sample

basis function

REVIEW from Lecture RL3: Self-localization 



Previous slide.

The sample image shows the orientation of the most strongly responding filter with the 

lowest spatial frequency at the 45 sampling locations.

The Gabor filters come as pairs of sine and cosine filters (or complex filters) and only the 

total amplitude, but not the phase of the response of the filter pair is recorded. 

The set of filter responses at time t of all 9000 filters is denoted by  𝐹(𝑡)

Details of the processing steps are explained in the next few slides



If ‘novel’: store views of visited places

}F{),( k=pL


Local view : activation of set 

of 9000 Gabor wavelets
Visual input at each 

time step

Single View Cell stores a 

local view
Environment exploration

All local views are 

stored in an 

incrementally growing

view cell population

Population of view cells

Robot in an environment

Fk

REVIEW from Lecture RL3: Self-localization 



Previous slide.

1) During exploration the robot takes a new sample image whenever it does not recognize 

the view. Recognition is defined that 10 or more cells strongly respond to the new image.

2) The sample image is memorized by storing the set of responses of the 9000 Gabor 

filters.

Next slide:

If we carefully analyze the algorithms described in steps 1) and 2) above, it can be 

implemented by Hebbian learning, modulated by a novelty signal.

Hence:

The learning rule is a three-factor rule, where the 3rd factor is ‘novelty’ as opposed to 

reward or TD. And indeed, there are neuromdulators that broadcast signals triggered by 

novelty. 



6. Summary

State representation: Hippocampus (and Cortex)

Question: how can we learn the ‘state representation’

by ‘place cells/radial basis functions’?

Growing population of view cells 

= 2-factor rule, modulated by ‘novelty’

= another 3-factor rule



- 4 or 5  neuromodulators

- near-global action

(reward – exp. reward)

(surprise)

n
o
ra

d
re

n
a
lin

e
Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Review: Neuromodulators

Image:

Fremaux and Gerstner, Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)



Learning outcome: RL learning rules 
- three-factor learning rules can be implemented by the brain
 synaptic changes need presynaptic factor,

postsynaptic factor and a neuromodulator (3rd factor)

 actor-critic and other policy gradient methods

give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

 set by joint activation of pre- and postsynaptic factor

 decay over time

 transformed in weight update if neuronodulator signal comes 

- the neuromodulator can signal TD error, or novelty 

 TD responds to reward minus expected reward

 novelty (not familiar) can also act as a third factor

6. Summary



[ ] In this last part (navigation) at least 60 percent of the 

material was new to me

[ ] In this last part (navigation) I have the feeling that I 

understood 80 percent or more

[ ] Even though I study CS/Math/Physics/EE, I found the 

links to learning in biology interesting (last 2 lectures)



(previous slide)

Conclusion is NOT: 

Brain implements exactly SARSA or Advantage-Actor-critic or Q-learning. 

Conclusion is more modest: you can find (interesting!) correlations with signatures 

of RL in the brain.

Gläscher et al. 2010



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

Objectives for today:

- Spiking Neural Networks (SNN)

- local learning rules for hardware

- neuromorphic chips

- reducing energy consumption 

Exploit: spikes are ‘rare’ events.

(most of a time a neuron does not a emit a spike)



(previous slide)

Neuromorphic hardware is a hot topic.

Many (but not all) neuromorphic chips use spiking neurons.

Gläscher et al. 2010



Background reading:

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic 

devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)

https://en.wikichip.org/wiki/intel/loihi

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-

computing-loihi-2-brief.pdf

Recent Development at IBM and INTEL:

Chip companies invest in neuromorphic

Potential reduction of energy consumption with SNN

and local learning rules (three-factor rules)

IBM research lab

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf


Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

3. Loihi Chip (INTEL)



brain algorithms

non-von-Neumann

computing &hardware

Three-factor Learning Rules 

Spiking neurons (event-based signal transmission)



Previous slide:

The Loihi chip of Intel that appeared as a research support chip in 2017/2018 is interesting because it gives 

a direct implementation of the above three-factor rule.



INTEL:

Loihi (announced 2017, appeared 2018)

Loihi2 (announced fall 2021, access on Intel’s cloud)



Previous slide:

More recently the first generation of Loihi has been replaced by Loihi2 with more general functionalities.



INTEL, Loihi research chip

Computing Architectures

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf



Previous slide:

This slide from INTEL emphasize the differences in the computing architecture.

LEFT: classical von Neumann computing with separation of CPU and memory. Compute operations are 

mapped to logical operations performed in discrete time.

MIDDLE: Parallel computing and GPU architectures. The separation of computing and memory remains, and 

operations are still performed in discrete time. The only difference is that certain operations (such as 

convolutions) or updates of layer-wise dynamics in ANNs can be performed in parallel.

RIGHT: Neuromorphic computing architectures. Neurons compute with spikes which leads to nonlinear 

compute operations and signal transmission at rare moments in time defined by the moments of threshold-

crossing.  In between neurons are updated  in ‘subthreshold’ mode with simple linear operations (leaky 

integration). Ideally, computing is asynchronous and in continuous time (even though this specific INTEL 

hardware implementation is still ‘digital’).



Two related arguments:

- energy consumption:

Loihi < 1 W  (GPU > 300W)

- asynchronous computing/event-based messaging

1 chip = mesh of 128 neuromorphic cores

Spiking neural network (SNN)

1 core = 1024 simple spiking neurons:

leaky integrate-and-fire 

On-chip integrated learning rule

https://en.wikichip.org/wiki/intel/loihi

https://en.wikichip.org/wiki/intel/loihi


Previous slide:

Why would one want to change the computing architecture?

Essentially because asynchronous, event-based computing could lead to enormous reductions in energy 

consumptions, because expensive nonlinear processing steps and transmission steps are sparse in time: 

they are rare compared to the elementary time step in a discrete-time implementation.

1 chip contains 128 cores, each one able to simulate about 1000 simple leaky integrate-and-fire neurons.



Loihi: (first chip, 2018)

- 128 neuron cores per chip

- Upto 128’000 neurons per chip

- 2 billion transistors

- Standard integrate-fire

neuron model

- Three-factor learning rule

trace(pre) trace(post) success

‘each spike leaves a synaptic trace’

 STDP coincidence



Previous slide:

Importantly, the framework of the  learning rule that is possible on the Loihi chip is exactly that of three-factor 

rules explained above.

Each presynaptic spike leaves a trace (synaptic trace/NOT eligibility trace). The combination with the trace 

left by a postsynaptic spike gives the coincidence signal. Further combination with a success signal defines 

the weight update.



Learning rules

Loihi (2017): Three-factor learning rules 
presynaptic factor, postsynaptic factor, global success

 single-layer RL algorithms

 Loihi2 (2022): Detailed three-factor learning rules

presynaptic factor, postsynaptic factor, neuron-specific feedback

 approximate BackProp in Multi-Layer RL



Previous slide:

In the new version, they generalized the learning rule so that it can now also implement an approximate 

version of BackProp. 





Previous slide:

Official INTEL slide.



Loihi2 (2022):

- 128 neuron cores per chip

- Up to 1 Mio neurons per chip

- 2 billion transistors

- programmable neuron model

- programmable learning rule

f(pre),g(post),3rd(neuron_i)

- spike broadcast at 

destination chip

- convolutional networks

- outer-product weight matrix

- Linked to C/Phython

programming interface



Previous slide:

Apart from spike broadcast (as opposed to targeted delivery lines), the chip also implements features such 

as weight matrices compatible with convolutional neural networks and outer-product weight matrices 

(factorial, see conv-net lecture).

Importantly, the learning rule framework now enables the user to switch from a GLOBAL third factor to a use-

defined programmable NEURON-specific third factor.



The 80-percent question again:

[ ] In this hardware part, at least 60 percent of the 

material was new to me.

[ ] for this hardware part,  I have the feeling that I  

understood at least 80 percent of the material

(at the rough level at which it was presented)



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

3. Loihi Chip (INTEL)

4. Memristor technology (IBM)



© 2020 IBM Corporation

Bert Jan Offrein

Analog synaptic signal processing 
for neural network inference and training

Neuromorphic Devices and Systems Group, IBM Research Europe - Zurich



Reading
Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic 

devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

The slides are adapted from a presentation of Bert Offrein who 

leads a group of neuromorphic computing at IBM research in 

Zurich-Ruschlikon.

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915


Accelerating Neuromorphic Workloads – Innovation required at all levels

IBM slide



Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix 

elements as a result of a learning rule (‘algorithm’, right). 



Three pillars for Si technology
Packaging in 3 dimensions

ScalingNew combinations of Materials

www.semi.org

The traditional scaling law (‘Moore’s law’) is dead! IBM slide



Previous slide:

In the IBM research the focus is more on new materials that enable faster and energy-efficient matrix 

multiplication as well as weight-update rules.

The three drivers of the changes are:

Left: New materials combine many more elements than older ones.

Middle: Moore’s law, the traditional scaling law of hardware performance increase, has come to its end.

Right: Packaging has to go from 2-dim to 3-dim arrangements.



Experiment: “Human Brain vs. Computer”

Task 1: Mathematics

2= ?

Task 2: Image recognition

Traditional silicon scaling ended

New types of problems gain interest

Explore new functionalities, More than Moore

Explore new computing paradigms

- approximate computing

- large parallel data streams



Previous slide:

This shows a simple theoretical experiment, where we want to compare the performance of the human brain 

with a computer based on two different tasks.

In task 1, both candidates have to calculate the square root of 2 as fast as possible.

In task 2 both candidates have to interpret a scene.

The point is that that task requirements in task 2 are very different!

For example, a single noisy pixel (or noisy compute process) is less relevant. Handling of large data streams 

is more important.



Review Brain inspired computing:

• Feed-forward sequential processing

• Information encoded in signal amplitude 

• Neuron activation: Accumulate + 
Threshold 

• Training: Backpropagation Algorithm

Deep Artificial Neural Network:Brain-like Neural network:

Simplify

“Cat”

“Dog”

“Mouse”

 Omni-directional signal flow

 Asynchronous pulse signals

 Information encoded in signal 
timing/Spiking Neural Networks

 Difficult to implement efficiently on 
standard computer hardware

Information processing flow

“Mouse”

“Dog”

“Cat”

IBM slide



Previous slide:

Standard comparison of a few differences Brain vs ANN. Not shown in class.



For many training cases x with target response t:

1. Forward Propagate:

2. Determine output error:

3. Backward Propagate: Determine neuron input 

influence 𝛿 on error E:

4. Adjust the active weights, proportional to their 
influence on the error:   Δ𝑊 = −𝜂 𝒙⨂𝜹

Review:  Training with  Backpropagation algorithm

: Signal vector

: Synaptic weight matrix

: Per-element neural activation     
function (sigmoid)

𝑊𝑛

𝜎

Neural net as chain of vector operations:

x 𝑊1 𝜎 𝑊2 𝜎 y

Input Output

𝑊3 𝜎

Backpropagation algorithm:

x 𝑊1 𝜎 𝑊2 𝜎 y𝑊3 𝜎
𝑥1 𝑥2 𝑥3

(𝒚 − 𝒕)2 E

x 𝜎′ 𝜎′ E𝑊3
𝑇 𝜎′𝑊2

𝑇𝑊1
𝑇

𝛿1 𝛿2 𝛿3

x Δ𝑊1 𝜎 Δ𝑊2 𝜎 yΔ𝑊3 𝜎
𝑥1 𝑥2 𝑥3𝛿1 𝛿2 𝛿3

𝑥

𝜎
(𝑥
)

0

1

0 IBM slide



Previous slide: not shown in class

Backpropagation involves 

- multiple Matrix multiplications (weight matrix per layer)

- Update of the matrix elements (learning rule)



Analog signal processing for scalability

 Limiting factors of von 

Neumann architecture
 Memory access

 Sequential operations

 Digital signal processing

127

Overcome by
 In-memory computing

 Parallel operations

 Analog signal processing

Processing 
Unit

Compute effort ~O(#Neurons2) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.

The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons 

per layer increases.



Training of Artificial Neural Networks: many matrix multiplications  

Training by Backpropagation Method: 

• Processing dominated by many large matrix operations

• Forward Propagation: 𝑊1,2..

• Backward Propagation:  𝑊1,2..
𝑇

• Weight Update:              ∆𝑊1,2..

Scale ∝ 𝑁2

GPU Inefficient on standard Von Neumann systems:
– (Mostly) Serial processing
– Low computation to IO ratio Memory 

bottleneck

For fast and efficient neural network data processing:

 Fully parallel processing

 Tight integration of processing and memory

 Analog signal processing

Neurons/layer

 G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016–Febru, no. 408, p. 4.4.1-4.4.4, 2016.

 T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1–13, 2016.

Crossbar arrays
• Electrical
• Optical

𝒙

𝑾𝒙

IBM slide



Previous slide:

Top:

In the week on BackPropagation we already discussed the scaling:

The algorithm scale proportional to the number of weights.

Assume that we have many layers and N neurons per layer. Then the scaling is O(𝑁2).

This is true for each of the three steps: forward pass, backward pass, weight update. 

Bottom:

With analog implementation of the matrix multiplication we should be able to achieve a better scaling:

Forward pass: O(1)

Backward pass: O(1)

Weight update: O(𝑁2) ????



Efficient training of Deep Artificial Neural Networks:

𝒙

𝑾𝒙

Matrix multiplication = Ohms law:  V=R I

Input signal 𝑥𝑗 = 𝑉𝑗 voltage of neuron j 

Weight        𝑤𝑖𝑗 = 1/𝑅𝑖𝑗 resistor at crossing

Output   𝐼𝑖 =  𝑗
𝑉𝑗

𝑅𝑖𝑗
= 𝑗𝑤𝑖𝑗 𝑥𝑗 current into neuron i

Electrical crossbar array: 

Images: IBM



Previous slide:

Each blue bar is a perfect conductor. The red crossing points are tunable resistors that play the role of 

synaptic weights.

From Ohm’s law follows that the current from neuron j to neuron i is 𝐼𝑖𝑗 = 𝑉𝑗/𝑅𝑖𝑗.

Kirchhoff’s law (conservation of current) gives the final summation equation.



Tunable weights via  Memristive Devices

• Resistance depends 
on molecular 
configuration

• Resistance increase or 
decreases with 
voltage pulses above 
threshold value

• Resistance keeps 
memory 

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of R

Understanding the mechanism

‘memory of resistance’ = ‘memristor’

Images: IBM



Previous slide:

Memristive material studied by IBM.

The basic function  arises from the following principle. 

The  material in light blue is an electrical  insulator (dielectric material). However, with a first strong voltage 

pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red 

column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a 

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be 

made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower 

left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and 

resistance for a long time. It has a ‘Memory of Resistance’  Memristor.



Efficient training of Deep Artificial Neural Networks: spiking network

For fast and efficient neural network data processing:

 Fully parallel processing

 Pulse coding

 Stochastic Poisson Process

Crossbar arrays
• Electrical 𝒙

𝑾𝒙

Weight update

order 1 !

Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers, 2016

- Local Hebbian Learning rule

- Spike coding (SNN)



Previous slide:

We now image the following coding principle (not yet implemented in hardware, but proposed some years 

ago).

Each presynaptic neurons sends voltage pulses (‘spikes’ of finite width) at random moments in time (Poisson 

process).

Each postsynaptic neuron sends voltage pulses (‘spikes’ of finite width) at random moments in time (an 

independent Poisson process).

The amplitude of the single pulse is such that it does not reach the switching amplitude of the memristive

material. But if two pulses coincide, then it reaches the threshold and increases the weight (decreases the 

resistance).

Thus we have a proposition to implement a local (two-factor) Hebbian learning rule in hardware. And, 

unexpectedly, we need spike coding for this implementation scheme!



Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers in Neuroscience, 2016
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This is a copy of the relevant section of the original publication



The device challenge

• RR
AM

13
9

Courtesy E. Vianello

- Create breakdown

(‘mild shortcut)

- Make size of breakdown tunable

w=1/R

Images: IBM



Previous slide:

Here The  material in yellow  is an electrical  insulator (dielectric material). However, with a first strong 

voltage pulse one can create an initial breakdown (blue channel) in the material. 

The question now is the following: Can we SMOOTHLY TUNE 

sith several additional medium-sized positive voltage pulse (red),  or  negative voltage pulse (blue), one 

can return to the initial configuration (lower left).
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 Vreset= 1.6V, Vset= 1.7V

 Vreset= 2.2V, Vset= 2V

 Vreset= 2.2V, Vset= 1.9V

      #200 pulses up/down 

      Fixed pulse duration 500ns

D34_12um

Understanding the mechanism

Changes induced by 200 pulses up (and down) 

 change the weights of ANN by appropriate pulses

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of G

Experimental demonstration of symmetric and continuous change of G

Images: IBM
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Experimental test with the material at the bottom shows that smooth tuning is possible (blue dots). Horizontal 

axis shows the number of pulses applied. After about 200 pulses the sign is switched so that the resistance 

goes down again.
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0 200 400 600 800 1000

2k
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LRSmin

1. Negative sweep to put it in Low-Resistance State

2. Read at 0.2V constantly for 1000s

3. Negative + positive cycle to put it in

increasing High-Resistance State (HRS)

4. Read at 0.2V constantly for 1000s for

each HRS

Intermediate states show no drift up to 1000 s

We can change values of resistance

New resistance is reliable over time

We can change again

‘Online Learning’

Valeria Bragaglia Email: vbr@zurich.ibm.com143

Retention of the Resistance Values over time (intermediate values)
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Moreover, after tuning the resistance remains constant



IBM Research

IBM Confidential © 2019 IBM Corporation

• Analog AI Cores

• For the synaptic processing 
function

• Apply memristive devices: 
Ohms law & Kirchhoff’s law

• Parallel forward inference & 
backward and weight update

compute performance

efficiency
Analog synaptic processing

New memristive

devices required

Inference Training
Resistance 1-100 MW 1-100 MW

# Levels 100 1000

Weight set / update To desired level Symmetric

AI Technology roadmap



Previous slide: not shown in class

The road map shows several aspects:

- Traditional scaling has increased not only the compute power, but also reduced the Watt per Flop.

- Traditional scaling expected to come to an end (or may continue, red dots)

- Staying digital, but allowing for approximate computing might give an extra jump in performance

- Going analog would yield a further jump.



The 80-percent question again:

[ ] In this hardware part on memristors, at least 60 

percent of the material was new to me.

[ ] for this hardware part, up to here, I have the 

feeling that I  

understood at least 80 percent of the material



Analog crossbar arrays: Update for BackProp

Electrical crossbar array: 

 𝑥

 𝛿

 𝑥

𝑊  𝑥

Forward 
propagati
on:

 𝛿

𝑊𝑇  𝛿

Backward 
propagati
on:

Weight 
update:

Weight update: proportional to signals 
on row and column

–Symmetric increase and decrease of 
weight

– >1bit analog levels required

Physical challenge: Identify material 
systems that meet these requirements

Training cycle

R
es

is
ta

n
ce

target
non-ideal

Δ𝑤𝑖𝑗 = −𝜂 𝑥𝑖 𝛿𝑗



Previous slide: not shown in class.

To have an impact, local Hebbian rules are not enough.

But one can also extend these ideas to local implementations of BackPROP.



Neuromorphic – local learning rules in hardware

 Extension from two-factor to three-factor rules possible O(1)!

 Extension to (approximative) Backprop possible O(N)!



Literature of ferroelectrics in AI hardware

• FTJ • FeFET

Group Name / DOC ID / 

Month XX, 2019 / © 2019 

151

Ferroelectric
• 2011: discovery of a ferroelectric phase in HfO2.

• 2017: FeFET integrated in a 28nm HKMG 

technology (Mulaosmanovic et al., VLSI 2017)

• 2018: IBM: crystallization of HfZrO4 in the FE 

phase below 400°C (O’Connor et al., APL 

Mater. 6, 121103 (2018))

• 2020: this work: first demonstration of a BEOL, 

CMOS FeFET



Summary

• Silicon technology remains the basis for computing devices

• Leverage existing processes, infrastructure and know-how

• Continuous extending of materials and function

• New computing paradigms – Neuromorphic computing  -
provides a path to handle unstructured data

• Analog signal processing in crossbar arrays

• Parallel processing of key algorithms in neural networks

• Electrical and optical implementations

 Extension to three-factor rule possible!
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

3. Loihi Chip (INTEL)

4. Memristor chips (IBM)

5. Memristor chips for toy RL application



representation of 

current state

A recent toy application: Neuromorphic/memristors

https://doi.org/10.1038/s41467-023-37097-5

Bianchi et al, Nat. Comm. (2023)



A recent toy application: Neuromorphic/memristors

- Very small toy application/exploratory lab research

- Digital control

- Memristors that switch from high to low resistance (binary)

- FPGA

 Very preliminary results, very small size,

but potential for large alternative compute

Will this safe energy?



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

3. Loihi Chip (INTEL)

4. Memristor chips (IBM)

5. Memristor chips for toy RL application

6. The problem of energy consumption



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Energy consumption of the brain

• Sedentary humans eat and use 2500 kCal per day

• Translate to Joule  10 000 kJ

• Brain facts: 20 percent of energy consumption of human at 
rest goes into the brain

• Most of it goes into synaptic signaling (spike transmission)

• Brain uses 24 – 30 Watt   (5 modern light bulbs)

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

The power consumption of the brain is relatively low!

 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain


Previous slide. 

Claim the power consumption of the brain (30W) is relatively low.

Low compared to what?

- Compare with GPU

= Compare with household power consumption.



Compare: Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090) 

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

https://www.tomshardware.com/features/graphics-card-power-consumption-tested


Previous slide:



Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090)

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

 10h of training an ANN on 1 GPU = 3.5 kWh

12 months GPU usage  3000 kWh

1 day of training an ANN on 1 GPU = 8000Wh   = 8 kWh

4 months GPU usage  1000 kWh

https://www.tomshardware.com/features/graphics-card-power-consumption-tested


Previous slide:

A day has 24 hours.  So we multiply the power (350W) with the number of hours.

4 months have 120 days.  Again a simple multiplication

The question then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.



Electrical household energy consumption

Typical Swiss electricity use in household (fridge, TV, light)

 about 1000 kWh per year and person.

• 2 persons sharing apartment = 2200kWh per year

• 4 persons sharing house = 4000kWh per year

Heating/warm water with heat pump 

4 persons sharing house:   6000kWh per year 

 1500 kWh per year and person

https://pubdb.bfe.admin.ch/de/publication/download/10559

https://pubdb.bfe.admin.ch/de/publication/download/10559


Previous slide:



Comparison

• Brain 30W                 260 kWh per year and person

• Living in Switzerland  2500 kWh per year and person

• GPU                          3000 kWh per year and GPU

Problem!!!!

Solution? – use your machine carefully!

- think about better computer architecture!



Previous slide:

The problem is that if you your model optimization uses on average a single GPU over the year, you use 

more energy on your GPU than you use by living in a normal rental apartment.



The neural network size explosion

• Source: 
NVIDIA
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The compute explosion
Source: 
Openai.com
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The power and carbon emission explosion

• Source: E. Strubell et al.,  
arXiv:1906.02243oil/gasoline: 1liter = 10kWh = 2.5 kg CO2

1000 km by plane emits as much CO2 as 1000 km by car.
New York  Geneva = 6200km



Flight Geneva New York

1 beef meal per day

Heating  50m2: 21 vs

(fossil fuels)    19  

heat pump 

Fabrication TV screen

1 paper cup per day

o

o



Where can YOU contribute?



Le Temps, April 2024, Bien au Contraire:

Decarboniser l’aviation



Energy consumption problem (for computing) 
will further increase over time!

Solution? – use your machine carefully!

- think more, simulate less! 

- invent better computer architecture!

Global warming is a reality! 
 Some regions no longer inhabitable/agriculture
 Big migration waves/relocation

Solution? – tax on CO2
- reliable and predictable increase from 10cent

to 100 dollars over 25 years.
- few countries start, others will follow



Thanks!

The END
… for today. There will be 2 more sessions. 


