Wulfram Gerstner

Artificial Neural Networks and RL o
from hrain-style computing to neuromorphic computing

ODbjectives for today:
- application of three-factor rules

- local learning rules for hardware
- Spiking Neural Networks (SNN)
- neuromorphic chips

- reducing energy consumption



Previous slide. We continue our discussion from last week

Background reading:

Fremaux et al,. 2013, PLOS Comput. Biol.
doi:10.1371/journal.pchi.1003024

IBM research lab

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic devices and systems,
IEEE Xplore, https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)
https://en.wikichip.org/wiki/intel/loihl
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Implementation of Navigation task with Memristors

https://dol.org/10.1038/s41467-023-37097-5


https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Review: Neurons and Synapses form a big network
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Previous slide. Review from previous lectures.

In the first lecture it was mentioned that the brain iIs radically different from the
classical von-Neumann architecture that lead to our standard compute devises.

Particularly important differences are that the brain-style computing architecture Is
completely distributed, without centralized clock, no centralized controller and no

separation of computing and memory.

We take in the following the learning rules of RL as a starting point of what this
means and mention at the end novel hardware.



Review: Learning Rules of Reinforcement Learning
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Previous slide. Review from previous lectures.

RL has two roots: optimization and Markov Decision Problems and Brain
sciences.

We take in the following the learning rules of RL to see how they lead to
alternative computing paradigms.



Review: Advantage Actor-Gritic with Eligibility traces

Actor—Critic with Eligibility Traces (continuing), for estimating mg ~ 7,

Input: a differentiable policy parameterization w(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: A% € [0,1], \? € [0,1], a¥ > 0, a® > 0

Initialize state-value weights w € R? and policy parameter @ € RY (e.g., to 0)
Initialize S € 8 (e.g., to sp)

z% < 0 (d-component eligibility trace vector)
7% « 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~m(|S,0)

Take action A. observe S’. I

0+ I+ yo(S'w)—0(Sw

The algo for the update
z% « \°28 + VInn(A|S, 0) IS the ‘Iearning rule’.

w4 w+avVozW

0 «— 60+ a6z° Adapted frOm
Sutton and Barto

z% < \"z% + Vo (S,w)




Previous slide. Review from previous lectures.

Red box:
Parameters Iin the advantage actor critic change proportional to

- The TD error delta

- Eligibility trace.

In turn, eligibility traces change proportional to

- The derivative of the value function for the critic
- The derivative of the log policy for the actor

- Adecay term

In the example today eligibility traces are important.



Review: Learning Rules of Reinforcement Learning

Assume the transition to state ™! with a reward of r!™! after taking action a* at state zt. The learning rule

for the Advantage Actor-Critic with Eligibility traces is

§ ' b, (28T — By, (2)
2 AY2Y" V., 00 (.’L‘t)

‘learning rule’
of Advan_tgge 27« X2% 4+ Vgmg(a'|z") (1)
Actor-Critic W w4+ o

with eligibility trace \\ 6« 0+ a%2%

- Learning rules of other ONLINE RL policy gradient models
are special cases of (1).

- We take (1) as a starting point to discuss the relation
with the brain and with hardware

Can such a learning rule be implemented in the brain?
Can such a learning rule be implemented in hardware?



Previous slide. Review from previous lecture.
In the following we take the Advantage Actor Critic as our Reference Model.

As we have seen earlier, other Algorithms in the Family of Policy Gradients can
be identified as special cases.

Last week we have seen how such a learning rule (update algorithm) be

Implemented in the brain.

In this lecture we ask: how could an implementation of the actor-critic look like In
the brain? And in hardware?



Update of all eligibility traces
Zik < ZiAs

— Z + dvflkln[n(a\s, wl)]

brain algorithms| ~ “%

v Change of all weights
Awie=n O¢ Zik

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible
with three-factor rules

AWy =n 1 Zy

Updates proportional to the reward » or TD error 9,




Previous slides.
Review of algorithm with actor-critic architecture with eligibility traces.

The Advantage actor critic has parameter updates proportional to the TD error.
Reinforce/policy gradient has updates proportional to the momentary reward.

Apart from this difference, the overall structure of the two algorithms Is very
similar.



Review: Learning Rules of Reinforcement Learning

N

brain algorithms

[r+y V(s)-V(s)]
TD signal

The learning rule of the advantage actor-critic
with eligibility traces

IS consistent with a brain-like three-factor rule

Dopamine In the brain broadcasts TD signal’




Previous slide. Review
In the Advantage Actor Critic the learning signal (third factor) is the TD error.

It turns out that dopamine in the brain has a signature that is reminiscent of a TD
signal (as shown last week). Dopamine can be seen as a (near-)global third
factor.



Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

1. Detour: Spiking Neural Networks (SNN)



Previous slide:

As we have seen In the previous lecture, neurons in the brain communicate by short pulses (spikes, also
called action potentials).

How can we model Spiking Neural Networks (SNNs)?

The standard model of s single Spiking Neuron is the leaky integrate-and-fire model (LIF).
In the community of computational neuroscience it is usually written in continuous time.

For computer science applications, it is usually written in discrete time.

We show both versions. But first we review some biological information about spikes.



| electrode
electrode to measure a single neuron

in the brain of a mouse ‘in vivo'.
- mouse has no specific task,

- no stimulus given
- Spikes are ‘rare’
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Previous slide.

Neurons have a voltage, sometimes called the membrane potential u.

The image shows the voltage measurements of a single neuron over several
seconds. We observe:

1) Occasionally there are spikes (large, but very short voltage peaks)
2) The interval between spikes is long (e.g., no spike for the first 3.5 seconds)



Review: The hrain uses signal transmission by spikes

| Signal:
y“ action potential (short pulse), called ‘spike’

4 potential
.
|

L Ll
b —

More than 1000 Iinputs



Previous slide. Review from Lecture O

Signals are transmitted along wires (called axons). These wires branch out to
make contacts with many other neurons.

Each neuron In cortex receives several thousands of wires from other neurons
that end in ‘'synapses’ (contact points) on the dendritic tree.



synapse



Previous slide. Review from Lecture 1

If a spike arrives at one of the synapses, it causes a measurable response In the
receiving neuron.

If several spikes arrive shortly after each other onto the same receiving neuron,
the responses add up.

If the summed response reaches a threshold value, this neuron in turn sends out
a spike to yet other neurons (and sometimes back to the neurons from which It
received a spike).



pulse

9

|
i b% t
-responses are added Synapse T\

-pulses created at threshold
-transmitted to other

-pulses are ‘unitary events’: shape of spike irrelevant
—> Mathematical description:

Integrate-and-fire neuron

response



Previous slide.

The fact that responses are added and then compared with a threshold Is an
aspect that is shared between real neurons, integrate-and-fire neurons, and
artificial neurons in ANNS.

This is the essential ideal that we keep for the abstract mathematical model in the
following.

Note that spikes are formal events — their duration can be reduced to zero. What
matters Is the fact whether a pulse Is transmitted, yes or no.



spiking Neural Network — Leaky Integrate-and-Fire Model

(continuous time formulation)

.

1
| _ Spike emission
| | Uj |
S e N N e
| reset
(1) ‘ T & \r\ﬁ N
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Previous slide:

The Leaky Integrate-and-fire model written in continuous time involves a LINEAR differential equation that
can be interpreted as an electrical RC circuit charged by a current /(z). This current /(t) consists of short
electrical pulses that present spike arrivals. The §(t —t"°)

denotes the Dirac delta function for each presynaptic spike arrival at times t}m and w;; are the weights. We
can interpret w;;  as the charge delivered by the current pulse at time ;" °.

he linear equation is combined with a NONLINEAR FIRE-and-RESET process. If the variable u
(‘membrane potential of the neuron’) reaches the threshold theta, then u« is reset to zero.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant

T = RC . Therefore after each short current pulse, the voltage (membrane potential) decays
exponentially back to zero with time constant t = RC .



spiking Neural Network — Leaky Integrate-and-Fire Model

(discrete time formulation)
Spike emission

a

_______________________ e 9
\lf reset
Mm | N
LT
4 Aui — Wij lf t = tjpre |inear, VOItage jump -
U; « A,U; linear, decay with parameter 4,,

if u; = u; « 0 threshold - fire+reset




Previous slide:

The Leaky Integrate-and-fire model written in discrete time (say time step At = 1ms)
has two linear update steps:
- each presynaptic spike causes a jump of the voltage (membrane potential) by the synaptic weight w;;.

- In each time step the membrane potential decays with a factor 4,,,<1. (Asice: If we compare with the
orevious equation in continuous time, we find that the factoris 1, = 1 (TM) where At Is the time step.)

These linear update steps are combined with a NONLINEAR FIRE-and-RESET process. If the variable u
(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.
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Previous slide:

We can compare the membrane potential (voltage u) of a real neuron with that of an integrate-and-fire

neuron for time-dependent input current. The same current drives either the real neuron, or the integrate-
and-fire neuron.

After optimization of parameters, the similarity Is striking.
The LIF misses a few spikes, and also puts a few extra spikes.

For the LIF spike times are defined by the threshold crossing. The spike time is marked for visualization by a
short vertical bar. After the spike the membrane potential is reset to a lower value.



forget spikes: continuous activity x

g(total input) ~el U forget time: discrete updates

LLLLL nonlinearity/threshold

LIF

activity of output x; = g (2 Wik xk)
k

I : .
' total Input
Wik

output g = spikes per second weights =

(firing rate) : |
leaky integrate-and-fire (LIF) adaptive

activity of inputs ~ xg parameters




Previous slide.
The activity of inputs (or input neurons) Iis denoted by x;,
The weight of a synapse Is denoted by w;;,

The nonlinearity (or threshold function) is denoted by g (could be a RelLU)

The output of the receiving neuron is given by
Xi =Y Z Wik Xk
k

The output for a leaky integrate-and-fire (LIF) neurons can be defined as the firing
rate (number of spikes persecond).

The function g (firing rate for constant input) of a LIF Is very similar to that of a
RelU.



The hrain is a large recurrent network of Spiking neurons
® Active neuron = spike emission

- spikes are rare events
- only events are transmitted = low bandwith



Previous slide:

This slide has already been shown in the very first week. In a spiking neural network, most neurons are most
of the time silent. Spikes are rare events.

This Is exploited in spiking hardware.



- spikes are rare binary events (yes/no)
- only events are transmitted - low bandwith
Typical time scales In the brain:

- spike transmission time 1ms Note:

- spike duration 1ms Hardware could
- rise time of postsynaptic potential lms  |have aspeed-up

- decay time of postsynaptic potential 10ms

factor > 10 000,

. . _ _ but respect the
- Interspike interval (active neurons) 50ms  |[relative time

- interspike interval (resting state)  1000ms  [scales.

- eligibility trace 1000ms

- update of synapses 10000ms= 10s
- decay of synapses >10 000s




Previous slide:
Neuronal dynamics occurs on different time scales.

The fast processes are In the range of 1ms.
However, most neurons emit most of the times no spikes, since interspike intervals are in the range of 30ms

to 3s. Hence spikes are rare events.

Consequence: transmission lines are rarely used.

But: the costly process is the transmission of the binary signal (spike) to thousands of other neurons.
Therefore we can save energy If only a few spikes are transmitted.

This can potentially lead to a large reduction of energy consumption.



Local Learning Rules, Spiking Neurons,
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Previous slide:

The lecture last week covered the relation between learning rules used by the brain and those implemented
IN modern reinforcement learning algorithms.

This lecture will make the link to recent developments in modern neuromorphic computing architectures that
are completely different than the class model of von-Neumann computing architectures.

One aspect Is that these hardware approaches explore potential advantages of Spiking Neural Networks.
Another aspect is that they rely on local learning rules, in particular three-factor rules.

A third aspect is that they could potentially reduce energy consumption.

This lecture today provides an outlook onto current developments for specialized, bio-inspired chips that will
eventually use much less energy than conventional chips. The category of chips is often called neuromorphic

chips since they take inspiration from biological principles in neuroscience.
In particular, they use communication with spiking neurons and local learning rules.



Review: Policy Gradient as three-factor rule

parameter = weight Wi Stimulus sucCcess
variable = eligibility Zi pre j
pre- = sending neuron
pOSt = receiving neuron j | pOSt
Change depends on pre and post synapse=
connection

Two factors: eligibility trace proportional to post times pre
A

Az;i = [at — (q (x))]x] A7 postsynaptic factor Is

activity — expected activity’
Third factor: TD-error (success ) inear decay with

Awij =n Or Z; parameter A,



Previous slide:

We have found that the update of weights of the actor in the output layer can be written as a three-factor

learning rule:

- The presynaptic factor and the postsynaptic factor define the eligibility trace and there select the
connection weight that is updated (pre and post are the two local factors).

- The third factor is global (independent of neuronal indices) and signals success.

- Success can be reward or the TD error (for the advantage actor-critic).



Review: Goincidence detection rule of STDP

3 Success signal:
Aw;; oc F(pre, post, SUCCESS) .
Eligibility trace: N/ success

Az;i >0 if 'STDP — ¢ondition’ %

POSt
Welight | |
AWij — Zij S \
\ Success signal STDP condition
Hebb rule/eligibility trace

10 ms

Xie and Seung 2003, Izhikevich, 2007; Florian, | !

2007; Legenstein et al., 2008, ﬁ

Fremaux et al. 2010, 2013




Previous slide:
A specific biologically plausible three-factor rule with eligibility traces would be the following:
- Spike-Timing-Dependent Plasticity (STDP) picks up coincidences between pre and postsynaptic spikes on

a time scale of 10 milliseconds. STDP is hence a spike-based version of Hebbian learning.

- If furthermore the success signal arrives within one second, then the weight is updated.



traces’ for STDP: how to implement Hebb with spikes

t pre

J |
. pre [
\l W pre-before-post
o 5ms|

| post
pOSt ¢

Simple STDP model (1) Trace left by presynaptic sp;?kfe (discrete time steps of 1ms):

(Gerstner et al. 1996, Ax] =1 lf [ = t]

Song-Miller-Abbott 2000, etc) k d 10
STDP condition xj < Ay X decays over LUms

sre-before-post (1) Update of e|lglbl|.lty trace at rgggntent of postsynaptic spike
I — zij < Az Z;; decays over 1000ms

10ms |~ (1) Update of weights prop to eligibility trace and Success S

Aw;i = z;; S decays never (or over days)



Previous slide:
T, =1/,
- For example, the pre-before-post ‘HEBB’ condition can be implemented by saying that the presynaptic
spike leaves an exponential trace (decaying with a time constant 7, = 1/1, of 10 millisecond); if the
postsynaptic spike arrives a few milliseconds afterwards, it sets an eligibility trace that is proportional to

the value of the presynaptic trace.
- The eligibility trace decays on slower time scale (time scale t=1/A:= 1 second).
- If the success signal arrives within one second, then the weight is updated.

- We can consider a special case (all time scales are the same discrete time step):
If (1) the eligibility trace has a time constantof 7, = 1/1, 10ms
(i) the Hebbian STDP condition is one-sided with a time scale of 10ms
(i) the discrete time step is 10ms,
then the three-factor STDP Is very similar to the

three-factor poli radient rul .
ee-factor policy gradient rule STDP condition: pre-before post

- Atwo-sided STDP condition (plus for pre-before post and
minus for post-before-pre) can be implemented by stating that the
postsynaptic spike leaves another trace (postsynaptic trace) which
leads to a negative updated of the eligibility trace at the moment of
the next presynaptic spike arrival.

10 'ms




W Review: Three-factor rules with eligibility trace

Three-factor rule defines a framework Success signal

x; = activity-trace left by of presynaptic neuron

M(S(3,%))
. = activity-trace left by of postsynaptic neuron
?; Y y of postsynap % host

Step 1: co-activation sets eligibility trace jpre |
Az;i =m f(@;) g(x;)
Step 2: eligibility trace decays over time
zij « Az Z;;
Step 3: eligibility trace translated into weight change
Aw;j =n M(S(cﬁ, f))zij



Previous slide:

There are many different Hebbian rules or STDP rules. Similarly, there is not a single three-factor rule.
Rather three-factor rules are a framework formulated as follows:

- The trace left by presynaptic activity contributes some nonlinear factor g(x;)

- The trace left by postsynaptic activity contributes some nonlinear factor f (¢;)

- The eligibility trace e;; Is changed proportional to the two factors f times g

- The eligibility trace decays by a factor A, correspcﬂ;l]azing to a time scale of about one second

- Weights are updates proportional to eligibility trace e;; times M with a modulator M that is a nonlinear
function of the success S. The modulator is the ‘third factor’ in the update rule.

- The modulator M adjusts not only the learning speed but also the direction of change. In other words, the
sign of the update (increase/decrease) depends on the sign of M.



Three- factor Learning Rules and Spiking Neurons

[ ] STDP is an acronym for Spike-Timing-Dependent Plasticity
| ] Spikes are pulses that last less than 10us

| | A spike of a presynaptic neuron that arrives 5ms
before a postsynaptic one sets leaves a ‘trace’ for a few ms

[ ] The eligibility trace of three-factor rules lasts for
at least 10 minutes

| | Neurons In the brain exhibit interspike-intervals that are
rarely longer than 50ms



Three- factor Learning Rules and Spiking Neurons

N

brain algorithms

_/

non-von-Neumann
computing &hardware

Summary:

- Neurons communicate
by short pulses

- Pulses last 1ms

- Pulses are rare events

- A pulse timing pre-
before-post (within
20ms) sets an eligibility
trace

- The eligibility trace
decay over 1s

- Dopamine, a global
neuromodulator, sends a
TD signal



The 80-percent question again:

| ] Today, up to here, for the 3-factor framework
and Spiking Neural Networks have the feeling that
| understood at least 80 percent of the material



Previous slide:

After this introduction to spiking neurons, and review of three-factor rules, we make a small detour to an
application that you have seen already at several occasions.

And then we are prepared to look at the first hardware implementation.



Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

1. Detour: Spiking Neural Networks (SNN)
2. Example: Navigation in a Maze (Model Study)

- What Is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented



Previous slide.

We said that the three factor rule, dopamine, TD signals, value functions now all
fit together. Let's apply this to the problem of navigation in a maze.

For biological plausibility we have to consider:
- Representation of states

- Representation of actions
- Representation of TD signal and learning rule




Example of modeling for biology: Navigation

- What Is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented

—>Use three-factor rule as a framework for learning

Big Question: Do we need an ‘exact’ actor-critic update rule?
- can we replace softmax by something else?
- can we replace condition for ‘coincidence’ pre-post
by something else?
- can we replace TD-error by something else?
- can we work with spiking neurons?



Previous slide.

Can we work with spiking neurons and solve a biological RL task using
components that look ‘plausible’™?



Review: TASK = conditioning in the Morris Water Maze

Morris Water Maze

—
o
o o
T

oC
<

Rats learn to find
the hidden platform
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ESCAPE LATENCY (s)

O

(Because they like to
get out of the cold water) Foster, Morris, Dayan 2000



Previous slide.
Behvioral experiment in the Morris Water Maze.
The water I1s milky so that the platform is visible.

After a few trials the rat swims directly to the platform



Review: Representation of momentary state: hippocampus

Hippocampus
- Sits below/part of temporal cortex_.-
- Involved in memory
- Involved In spatial memory

A .
"""""
L

Spatial memory:
Knowing where you are,
knowing how to navigate in an environment

Hippocampus

fig: Wikipedia
Henry Gray (1918) Anatomy of the Human Body



https://en.wikipedia.org/wiki/Henry_Gray

Previous slide.

the problem of navigation needs the spatical representation of the hippocampus.
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Previous slide.

the hippocampus of rodents (rats or mice) looks somewhat different to that of

humans. Importantly, cells in hippocampus of rodents respond only in a small

region of the environment. For this reason they are called place cells. The small
region iIs called the place field of the cell.



Main property: encoding the animal’s location




Previous slide.
Left: experimentally measured place field of a single cell in hippocampus.
Right: computer animation of place field



6. Representation of actions: Ring of spiking actor neurons
Mexican-hat interaction :

- Local excitation

- Long-range inhibiton Y F(li=JD

- Bump of activity at arbitrary location.

\ /N

lateral connectivity
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Previous slide.

Mexican-hat is a widely used interaction scheme.

Neighboring neurons (within some distance) excite each other, while far-away
neurons Inhibit each other. The connectivity pattern Is translation invariant.

If the excitatory interactions are strong enough, then a localized group of neurons
fires with high activity while all other neurons are inactivity. Importantly, the bump
of activity can sit at an arbitrary location. The location can be influenced by input

from a previous layer of neurons.

In our application, the location of the bump indicates the momentary action of
movement.



6. Representation of actions: Ring of spiking actor neurons
Note: no need to formally define a softmax function

- Local excitation
A e - Long-range inhibition
g - Not a formal softmax
- Could be a model
of action selection
2 [ 4= 100 O O 2 In striatum

inhibitory
a

ory

t

lateral connectivity
| ‘

excita

W
neurons are tuned to
 N= /7t N

Fremaux et al. (2013)



Actor neurons (previous slide).

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory,
red: inhibitory) embodies the agent’s policy (top).

B: Lateral connectivity. Each neuron codes for a distinct motion direction.
Neurons form excitatory synapses to similarly tuned neurons and

Inhibitory synapses to other neurons.

C: Activity of actor neurons during an example trial. The activity of the
neurons (vertical axis) iIs shown as a color map against time (horizontal
axis). The lateral connectivity ensures that there Is a single bump of activity
at every moment in time. The black line shows the direction of motion (right
axis; arrows in panel B) chosen as a result of the neural activity.

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

Fremaux et al. (2013)



6. Representation of Learning rule: Spikes + Eligibility trace

policy =53~ S22y N “value
map TN —wewor A map
actor R critic
NeuUrons g — 4 neurons
place SUCCESS
cells \
environment _- post
pre |

]
Fremaux et al. (2013)



Figure 1. Navigation task and actor-critic network. From bottom to top: the simulated agent evolves in a maze environment, until it finds the
reward area (green disk), avoiding obstacles (red). Place cells maintain a representation of the position of the agent through their tuning curves. Blue
shadow: example tuning curve of one place cell (black); blue dots: tuning curves centers of other place cells. Right: a pool of critic neurons encode the
expected future reward (value map, top right) at the agent’s current position. The change in the predicted value is compared to the actual reward,
leading to the temporal difference (TD) error. The TD error signal is broadcast to the synapses as part of the learning rule. Left: a ring of actor neurons
with global inhibition and local excitation code for the direction taken by the agent. Their choices depending on the agent’s position embody a
policy map (top left).

doi:10.1371/iournal.pcbi.1003024.9001



6. Learning rule: Three-factor STDP for reward-hased learning

Success signal:

at- = F(wij; PRE; ,POST; , 3rd) TD error
pre-post-coincidence SUCCESS p
| t
/ Tchﬁj = —Zjj + STDP(tZc — t]f) pOS-t ‘
|
18 dWi ' — tf
at = Zij S0 ore AR

Success signal

Hebb rule/eligibility trace >1DP
10 ms

Xie and Seung 2003 Izhikevich, 2007; Florian, '
2007; Legenstein et al., 2008, ﬁ
Fremaux et al. 2010, 2013




6. Learning rule with TD in Actor-Critic for spiking neurons

Learning rule with three factors (previous slide) based on spikes

1. In biology, neurons communicate by spikes (short electrical pulses).

2. Synaptic changes depend on the relative timing of the spikes of the
sending (pre) and the receiving (post) neuron: Spike-Timing-Dependent
Plasticity (STDP). Strong changes occur only If pre- and postsynaptic spikes

coincide within +/- 20 ms.
3. STDP Is used to set the eligibility trace. The eligibility trace decays on a

much slower time scale of 1s.
4. Un success signal Is necessary to transform the eligibility trace into an

actual weight change.

Therefore weights increase Iif a success signal occurs within roughly one
second after a coincident activity of pre- and postsynaptic neuron.

Fremaux et al. (2013)



6. Two variants of spike-based three-factor Learning rules

A bre-post filtering  TD error
coincidence 5
(1) ) TD-TP
] % —P E K
O\) 10ms| t 0,
| J
/) —> At |
( ost -
pre(l) ) (3) TD-STDP
U’ — KRe t_'é()_blbw
( |
post 1s
Condition for Decay of RL eligibility

setting synaptic  trace : 1s
trace: 10 ms

Fremaux et al. (2013)



6. Learning rule with TD in Actor-Critic for spiking neurons

A: Learning rule with three factors (previous slide). We consider two different
variants

Top: TD-LTP Is the learning rule resulting from policy gradient. It works by
passing the presynaptic spike train (factor 1) and the postsynaptic spike train
(factor 2) through a coincidence window . Spikes are counted as

coincident If the postsynaptic spike occurs within after a few ms of a
presynaptic spike. The result of the pre-post coincidence measure Is low-
pass-filtered by passing it through a kernel (which yields the eligibility trace,
decaying of 1s), and then multiplied by the TD error (t) (factor 3) to yield the
learning rule which controls the change of the synaptic weight w_1j .

Bottom: TD-STDP Is closer to biology and consists of a TD-modulated
variant of STDP. The main difference with TD-LTP Is the presence of a post-
before-pre component in the coincidence window. As before, coincidences

with 10ms set the eligibility trace
Fremaux et al. (2013)



6. Maze Navigation with TD in Actor-Gritic with spiking neurons

A early trial
) Late trial
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6. Maze Navigation with TD in Actor-Gritic with spiking neurons

Maze navigation learning task. Both TD rules (TD-LTP and TD-STDP) work equally
well. Hence, detalils of how the eligibility trace Is set do not matter.

A: The maze consists of a square enclosure, with a circular goal area (green) In the
center. A U-shaped obstacle (red) makes the task harder by forcing turns on
trajectories from three out of the four possible starting locations (crosses).

B: Color-coded trajectories of an example TD-LTP agent during the first 75 simulated
trials. Early trials (blue) are spent exploring the maze and the obstacles, while later
trials (green to red) exploit stereotypical behavior.

C: Value map (color map) and policy (vector field) represented by the synaptic
welights of the agent of panel B after 2000s simulated seconds.

D: Goal reaching latency of agents using different learning rules. Latencies of N=100
simulated agents per learning rule. The solid lines shows the median shaded area
represents the 25th to 75th percentiles. The R-max learning rule is standard policy
gradient agent without a critic and enters times-out after 50 seconds. Hence it Is
important that the 3" factor is TD and not just ‘raw’ reward.

Fremaux et al. (2013)



6. Acrohot task with TD in Actor-Gr

Fremaux et al. (2013)
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Previous slide.
Application of the same model (spiking three-factor rule) to the Acrobot task.



6. TD in Actor-Critic with spiking neurons
- Learns in a few trials (assuming good representation)

- Works in continuous time. No artificial ‘time steps’

- Works with spiking neurons

- Works In continuous space and for continuous actions

- Uses a biologically plausible 3-factor learning rule

- Detalls of coincidence condition (STDP/spike LTP) irrelvant
- Critic implements value function

- TD signal calculated by critic and broadcasted to network

- Actor neurons Interact via synaptic connections

- No need for algorithmic ‘softmax’

- 3-factor rules with TD as global signal work much better

than standard policy gradient (REINFORCE)
Fremaux et al. (2013)



Previous slide.
Summary of findings



6. Summary Learning in the Brainvs RL algo

Advantage Actor-Critic Reinforcement learning needs:
- states / sensory representation

- action selection

- value function/critic

- pbroadcast of TD error

- TD error calculation

N

brain algorithms

_/



6. Summary

Several aspects of TD learning in an actor-critic framework
can be mapped to the brain:

Sensory representation: Hippocampal place cells
(and Cortex)

Actor : Dorsal Striatum

Critic : Ventral Striatum (nucleus accumbens)

TD-signal: Dopamine

Three-factor rule!
With spiking neurons!
Learning In about 10 epochs.



6. Summary

Several aspects of TD learning in an actor-critic framework
can be mapped to the brain:

State representation: Hippocampus (and Cortex)

Actor : Dorsal Striatum
Critic : Ventral Striatum (nucleus accumbens)
TD-signal: Dopamine

- But how can we learn the ‘state representation’
by ‘place cells/radial basis functions’?



REVIEW from Lecture RL3: Gontinuous space in RL:

Self-localization and Navigationto Goal
- 2-dimensional arena 80cmx60cm

- single goal location
- 120 actions (=directions of movement)

Agent:
Khepera Robot

Camera;
240 view
>240 000 pixel

Preprocessing:
Gabor filter bank




Previous slide.

The camera of the Khepera robot takes snapshots in 4 directions that are combined into a
single view covering a viewing field of 240 degree (total would be 360 degree).



REVIEW from Lecture RL3: Seli-localization

- Preprocessing Gabor filter bank:
Filters of several spatial frequency and orlentatlon
at 45 different locations. r

- Snap-shot of environment
If ‘novel’ store the vector F;

of filter responses

- ‘Basis-function’ qb(F(t) — Fj)
similarity of current view F(t) with stored view vector F;

after rotation to optimal matching angle sample
basis function




Previous slide.

The sample image shows the orientation of the most strongly responding filter with the
lowest spatial frequency at the 45 sampling locations.

The Gabor filters come as pairs of sine and cosine filters (or complex filters) and only the
total amplitude, but not the phase of the response of the filter pair Is recorded.

The set of filter responses at time t of all 9000 filters Is denoted by F(t)

Details of the processing steps are explained in the next few slides
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Previous slide.

1) During exploration the robot takes a new sample image whenever it does not recognize
the view. Recognition is defined that 10 or more cells strongly respond to the new image.

2) The sample image is memorized by storing the set of responses of the 9000 Gabor
filters.

Next slide:

If we carefully analyze the algorithms described in steps 1) and 2) above, it can be
Implemented by Hebbian learning, modulated by a novelty signal.

Hence:
The learning rule is a three-factor rule, where the 3" factor is ‘novelty’ as opposed to

reward or TD. And Iindeed, there are neuromdulators that broadcast signals triggered by
novelty.



6. Summary

State representation: Hippocampus (and Cortex)

Question: how can we learn the ‘state representation’
by ‘place cells/radial basis functions'?

-> Growing population of view cells
= 2-factor rule, modulated by ‘novelty
= another 3-factor rule




Imaae: Bioloaical Psvycholoay, Sinauer

Review: Neuromodulators
Dopamlne (DA)

-4 or 5 neuromodulators
- near-global action

Schultz et al., 1997, 4
Schultz, 2002 i n  Mettbocail pute:

striatum (caudate tn nuc lvus acc uml\'ns, mrlt X
and putamen) : : LRSS

Dopamine/reward/TD:

(surprise) Noradrenaline (NE)

novelty
7'\

dopamine

- . @
-
o Y

noradrenaline

: > ippocampus . :‘.;_;,

suCCess e — S (G

Locus coeruleus

Image: (reward — exp. reward) o hippocampus, basa /
To

ganglia, and cortex

Fremaux and Gerstner, Frontiers (2016) iR et

BIOLOGICAL PSYCHOLOGY 7e, Figure 4.5

spinal cord  Cerebellum



6. Summary
Learning outcome: RL learning rules

- three-factor learning rules can be implemented by the brain
-> synaptic changes need presynaptic factor,
postsynaptic factor and a neuromodulator (3" factor)
-> actor-critic and other policy gradient methods
give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

-> set by joint activation of pre- and postsynaptic factor

-> decay over time
- transformed In weight update Iif neuronodulator signal comes

- the neuromodulator can signal TD error, or novelty

- TD responds to reward minus expected reward
-> nhovelty (not familiar) can also act as a third factor




| ] In this last part (navigation) at least 60 percent of the
material was new to me

| | In this last part (navigation) | have the feeling that |
understood 80 percent or more

| | Even though | study CS/Math/Physics/EE, | found the
links to learning In biology interesting (last 2 lectures)



(previous slide)
Conclusion is NOT:
Brain implements exactly SARSA or Advantage-Actor-critic or Q-learning.

Conclusion Is more modest: you can find (interesting!) correlations with signatures
of RL In the brain.

Glascher et al. 2010



Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

ODbjectives for today:

- Spiking Neural Networks (SNN)
- local learning rules for hardware
- neuromorphic chips

- reducing energy consumption

Exploit: spikes are ‘rare’ events.
(most of a time a neuron does not a emit a spike)



(previous slide)

Neuromorphic hardware Is a hot topic.
Many (but not all) neuromorphic chips use spiking neurons.

Glascher et al. 2010



Recent Development at IBM and INTEL.
Chip companies invest In neuromorphic
Potential reduction of energy consumption with SNN
and local learning rules (three-factor rules)

Background reading:
IBM research lab

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic

devices and systems, IEEE Xplore,
https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-

computing-loihi-2-brief.pdf



https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

1. Detour: Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze (Model Study)
3. Loihi Chip (INTEL)



Three-factor Learning Rules
Sniking neurons tevent-hased signal transmission]

brain algorithms

Nnon-von-Neumann
computing &hardware




Previous slide:

The Loihi chip of Intel that appeared as a research support chip in 2017/2018 Is interesting because it gives
a direct implementation of the above three-factor rule.



INTEL.:
Loihl (announced 2017, appeared 2018)

Loihi2 (announced fall 2021, access on Intel’s cloud)




Previous slide:

More recently the first generation of Loihi has been replaced by Loihi2 with more general functionalities.



INTEL, Lolhi research chip

Computing Architectures

Conventional Computing Parallel Computing Neuromorphic Computing

Memory EEERE Memory
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* Programming by * Offline Training Using * Learn On-the-Fly Through
Encoding Algorithms Labeled Datasets Neuron Firing Rules

= Synchronous Clocking = Synchronous Clocking = Asynchronous Event-Based Spikes

* Sequential Threads of Control * Parallel Dense Compute * Parallel Sparse Compute

if X then

else

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf



Previous slide:

This slide from INTEL emphasize the differences in the computing architecture.

LEFT: classical von Neumann computing with separation of CPU and memory. Compute operations are

mapped to logical operations performed in discrete time.

MIDDLE: Parallel computing and GPU architectures. The separation of computing and memory remains, and

operations are still performed in discrete time. The only difference Is that certain operations (such
convolutions) or updates of layer-wise dynamics in ANNs can be performed in parallel.

RIGHT: Neuromorphic computing architectures. Neurons compute with spikes which leads to non
compute operations and signal transmission at rare moments in time defined by the moments of t
crossing. In between neurons are updated in ‘subthreshold’ mode with simple linear operations (
iIntegration). Ideally, computing is asynchronous and in continuous time (even though this specific
hardware implementation is still ‘digital’).

asS

inear
nreshold-

eaky
INTEL



Two related arguments:
- energy consumption:

Loihi <1 W (GPU > 300W)

- asynchronous computing/event-based messaging

Chip1l [

Chip 2

Chip 3 [

Chip 4

1 chip = mesh of 128 neuromorphic cores

Spiking neural network (SNN)

1 core = 1024 simple spiking neurons:
leaky Integrate-and-fire

On-chip integrated learning rule

https://en.wikichip.org/wiki/intel/loihi



https://en.wikichip.org/wiki/intel/loihi

Previous slide:
Why would one want to change the computing architecture?

Essentially because asynchronous, event-based computing could lead to enormous reductions in energy
consumptions, because expensive nonlinear processing steps and transmission steps are sparse in time:

they are rare compared to the elementary time step in a discrete-time implementation.

1 chip contains 128 cores, each one able to simulate about 1000 simple leaky integrate-and-fire neurons.



- - - - IN Synapse Dendrite Axon ouT
Loihiz (first chip, 2018) || ==l F oot | o =l L.
L Fgg‘m—" o Eﬂg —> ZE I S g | S 4w S £ . -
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- 128 neuron cores per chip FE'T SRR AR
- Upto 128°000 neurons per chip A
- 2 billion transistors _ jteaming
:Er @ messsess Input Spike Handling
- Standard integrate-fire el T Sk Generse)
neuron model L]

- Three-factor learning rule
trace(pre) trace(post) success

‘each spike leaves a synaptic trace’
- STDP coincidence



Previous slide:

Importantly, the framework of the learning rule that is possible on the Loihi chip is exactly that of three-factor
rules explained above.

Each presynaptic spike leaves a trace (synaptic trace/NOT eligibility trace). The combination with the trace
left by a postsynaptic spike gives the coincidence signal. Further combination with a success signal defines
the weight update.



Learning rules

- Loihi (2017): Three-factor learning rules

presynaptic factor, postsynaptic factor, global success
- single-layer RL algorithms

-> Loihi2 (2022): Detalled three-factor learning rules

presynaptic factor, postsynaptic factor, neuron-specific feedback
- approximate BackProp in Multi-Layer RL



Previous slide:

In the new version, they generalized the learning rule so that it can now also implement an approximate
version of BackProp.



Programmable

Neurons
Neuron models
described by microcode
instructions

[0)7

Faster
2-10x faster circuits* and
design optimizations
- speed up workloads by
[ up to 10x-

Fabricated with Intel 4 process

NCL  Neuromorphic Computing Lab

Introducing Loihi

Generalized
Spikes
Spikes carry integer
magnitudes for greater
workload precision
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More Neurons

Up to I million neurons
per chip with up to 80x
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Based on silicon characterization of Loihi
 and a combination of silicon and pre-
silicon simulation estimates for Loihi 2.

Based on simulation modeling of a 9-
layer Sigma-Delta Neural Network
implementation of the PilotNet DNN
inference workload compared to a rate-
coded SNN implementation on Loihi .

Based on pre-silicon circuit simulations.

Based on a 7-chip Locally Competitive
Algorithm workload analysis.

See backup for analysis details.
Results may vary.

intel labs




Previous slide:

Official INTEL slide.



L 0ihi2 (2022):

- 128 neuron cores per chip
- Up to 1 Mio neurons per chip

2 billion transistors

programmable neuron model
programmable learning rule
f(pre),g(post),3"(neuron_i)

spike broadcast at
destination chip
convolutional networks
outer-product weight matrix
Linked to C/Phython
programming Iinterface

On-chip broadcast of
spikes from remote chips

A” | 4
Neuron Core
\ 4
Synapses
Convolution Factorized
Store kernel instead O(n?) to O(n)
of connection matrix compression
HEREEE .
T T T 1 Stochastic
HEEREEER Up to 80X
vlil |1 | | compression
HEEN
<11 F ““““ 1

| Neurons

Neuron State
Typical 4x compression vs. Loihi

______ 4 Axon Routing

Up to 256X compression vs. Loihi

Output spikes



Previous slide:

Apart from spike broadcast (as opposed to targeted delivery lines), the chip also implements features such

as weight matrices compatible with convolutional neural networks and outer-product weight matrices
(factorial, see conv-net lecture).

Importantly, the learning rule framework now enables the user to switch from a GLOBAL third factor to a use-
defined programmable NEURON-specific third factor.



The 80-percent question again:

| | In this hardware part, at least 60 percent of the
material was new to me.

| | for this hardware part, | have the feeling that |
understood at least 80 percent of the material
(at the rough level at which it was presented)



Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

Detour: Spiking Neural Networks (SNN)
Example: Navigation in a Maze (Model Study)
Loihi Chip (INTEL)

Memristor technology (IBM)

> Wk



Analog synaptic sighal processing
for neural network inference and training

Bert Jan Offrein
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Reading

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic

devices and systems, IEEE Xplore,
https://ieeexplore.ieee.org/abstract/document/9371915

The slides are adapted from a presentation of Bert Offrein who
leads a group of neuromorphic computing at IBM research In
Zurich-Ruschlikon.


https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915

Accelerating Neuromorphic Workloads — Innovation required at all levels
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New Materials Non von Neumann Hardware —

and Devices

Architecture Algorithm Interplay

IBM slide



Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix
elements as a result of a learning rule (‘algorithm’, right).



Three pillars for Si technology

New combinations of Materials Packaging in 3 dimensions

In the 1980s. the typical semiconductor used only a fraction of the primary elements

Today, six times as many elements are used - more than half of the periodic table.

1
! 1000am feature size . : y
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FROM DIPs TO SiPs:
AN EVOLUTION OF SEMICONDUCTOR PACKAGING

b veuad

e
H

L

T"
g TP

s <
g

2000s \/

THE FUTURE?

THAT'S NO CHIP...
THAT'S AN INTEGRATED SYSTEM!

The demands of next-generation electronics are making
packaging more important—and more complex—than
ever before. SEMI members are innovating advances in
packaging technology to make the package integral to
the design and function of products they power.

Source: Intel, SanDisk, Intermolecular

www.semi.org

The traditional scaling law (‘Moore’s law’) is dead! IBM slide



Previous slide:

In the IBM research the focus is more on new materials that enable faster and energy-efficient matrix
multiplication as well as weight-update rules.

The three drivers of the changes are:
Left: New materials combine many more elements than older ones.
Middle: Moore’s law, the traditional scaling law of hardware performance increase, has come to its end.

Right: Packaging has to go from 2-dim to 3-dim arrangements.



Experiment: " Human Brain vs. Computer”

Task 1. Mathematics Task 2: Image recognition

2= "7

Traditional silicon scaling ended Explore new functionalities, More than Moore
New types of problems gain interest Explore new computing paradigms

- approximate computing
- large parallel data streams



Previous slide:

This shows a simple theoretical experiment, where we want to compare the performance of the human brain
with a computer based on two different tasks.

In task 1, both candidates have to calculate the square root of 2 as fast as possible.
In task 2 both candidates have to interpret a scene.
The point is that that task requirements In task 2 are very different!

For example, a single noisy pixel (or noisy compute process) is less relevant. Handling of large data streams
IS more important.



Review Brain inspired computing:

Brain-like Neural network:

= Omni-directional signal flow

= Asynchronous pulse signals

= |Information encoded in signal
timing/Spiking Neural Networks

=» Difficult to implement efficiently on
standard computer hardware

. Input neurons
. Hidden neurons

. Qutput nodes

¢ Synaptic weights

“Cat!!

Simplify

)

Deep Artificial Neural Network:

S0
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X SR Joe %
AN RAARY % Va\d, AKX
e WV X 5%

Information processing flow >

NE, ANYE. ANV
LSRR AR e X XA

AN NP AN e

SN2

i a 2 n |
Input R R Output
layer Hidden layers layer

Feed-forward sequential processing
Information encoded in signal amplitude

Neuron activation: Accumulate +
Threshold

Training: Backpropagation Algorithm

IBM slide



Previous slide:

Standard comparison of a few differences Brain vs ANN. Not shown In class.



Review: Training with Backpropagation algorithm

Neural net as chain of vector operations: Backpropagation algorithm:

For many training cases x with target response t:

\" 1. Forward Propagate:

AN K V-
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— : Signal vector 4

Adjust the active weights, proportional to their
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IBM slide



Previous slide: not shown In class

Backpropagation involves
- multiple Matrix multiplications (weight matrix per layer)
- Update of the matrix elements (learning rule)



Analog signal processing for scalability

= Limiting factors of von = Overcome by
Neumann architecture = |n-memory computing
= Memory access » = Parallel operations

= Seqguential operations

o . . = Analog signal processing
= Digital signal processing

Voltage V,

Processing Memory -
Unit 2
Compute effort ~O(#Neurons?) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.
The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons

per layer increases.



Training of Artificial Neural Networks: many matrix multiplications

Training by Backpropagation Method:

®  Processing dominated by many large matrix operations

O Forward Propagationl W1,2..

Scale o¢ N2
\Neurons/layer

g Backward Propagation: W1T,2.. B

< koff%

)‘V 1" ‘
@S
RIEAOSIING O
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D Y2 LT

)

®  Weight Update: AW, 5 |
= |nefficient on standard Von Neumann systems:
— (Mostly) Serial processing

— Low computation to 10 ratio 2 Memory
bottleneck

GPU Memory

LT

For fast and efficient neural network data processing:

———

= Fully parallel processing
= Tight integration of processing and memory — Crossbar arrays \

. . e Electrical X
= Analog signal processing J« Optical

G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016—Febru, no. 408, p. 4.4.1-4.4.4, 2016.
T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1-13, 2016.
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IBM slide



Previous slide:
Top:
In the week on BackPropagation we already discussed the scaling:

The algorithm scale proportional to the number of weights.
Assume that we have many layers and N neurons per layer. Then the scaling is O(N?4).

This is true for each of the three steps: forward pass, backward pass, weight update.

Bottom:
With analog implementation of the matrix multiplication we should be able to achieve a better scaling:

Forward pass: O(1)
Backward pass: O(1)
Weight update: O(N?) ???7?



Efficient training of Deep Artificial Neural Networks:
Matrix multiplication = Ohms law: V=R I

Electrical crossbar array:

Voltage V, Metal wires

N

’4—
Vi
e

\X X e
D0l N
Ny Yoy VAW
W ' 4
"“ﬁ“é‘ V00 s

C R

Voltage V,

Syuaptc (), Tunatle, NN / Wx
= 7
Input signal x; = V; voltage of neuron | o1 3232
_ _ : Q@ 0 0—0—0—0—
Welght w;; = 1/R;; resistoratcrossing *  $iiiil
Vi : oottt
Output [; =¥ ;==X ;w;;x; currentinto neuron |

J R;; Images: IBM



Previous slide:

Each blue bar is a perfect conductor. The red crossing points are tunable resistors that play the role of
synaptic weights.

From Ohm's law follows that the current from neuron j to neuron iis I;; = V; /R;;.

Kirchhoff's law (conservation of current) gives the final summation equation.



Tunable weights via Memristive Devices

‘memory of resistance’ = ‘memristor

® Resistance depends
Understanding the mechanism on molecular

configuration

® Resistance Increase or

decreases with
voltage pulses above
threshold value

® Resistance keeps
memory

IBM MO,+HfO,

Continuous &
symmetric
change of R

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Images: IBM



Previous slide:
Memristive material studied by IBM.
The basic function arises from the following principle.

The material in light blue is an electrical insulator (dielectric material). However, with a first strong voltage
pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red
column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be
made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower
left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and
resistance for a long time. It has a ‘Memory of Resistance’ 2> Memristor.



Efficient training of Deep Artificial Neural Networks: spiking network

Vs + Ag>0

ﬁ»‘q s JUWE, 7 - Local Hebbian Learning rule

Weight update - Spike coding (SNN)

order 1! - : wwfl\\
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L ° . Wx
For fast and efficient neural network data processing: -
= Fully parallel processing B r ? ? ? 1
= Pulse coding _ Crossbar arrays \ @ —0———0—
* Electrical X [ e R
= Stochastic Poisson Process _ L an o an o &
Gokman and Vlasov, Acceleration of Deep Neural ﬁ S

Networks with Resistive Cross-Point Devices
Frontiers, 2016



Previous slide:

We now image the following coding principle (not yet implemented in hardware, but proposed some years
ago).

Each presynaptic neurons sends voltage pulses (‘spikes’ of finite width) at random moments in time (Poisson
process).

Each postsynaptic neuron sends voltage pulses (‘spikes’ of finite width) at random moments in time (an
Independent Poisson process).

The amplitude of the single pulse Is such that it does not reach the switching amplitude of the memristive
material. But If two pulses coincide, then it reaches the threshold and increases the weight (decreases the
resistance).

Thus we have a proposition to implement a local (two-factor) Hebbian learning rule in hardware. And,
unexpectedly, we need spike coding for this implementation scheme!



FIGURE 1 | (A) Schematics of original weight update rule of Equation (1) performed at each cross-point. (B) Schematics of stochastic update rule of Equation (2) that
uses simple AND operation at each cross-point. Pulsing scheme that enables the implementation of stochastic updates rule by EPU devices for (C) up and (D) down
conductance changes.

Wij <— Wjj + I}Ifﬁj (1)

where w;; represents the weight value for the i" row and the
i column (for simplicity layer index is omitted) and x; is the
activity at the input neuron, §; is the error computed by the
output neuron and 7 is the global learning rate.

In order to implement a local and parallel update on an array |
of two-terminal devices that can perform both weight storage Gokman and Vlasov, Acceleration of Deep Neural

and processing (RPU) we first propose to significantly simplify Netwprks_with Resis_tive Cross-Point Devices
the multiplication operation itself by using stochastic computing Frontiers in Neuroscience, 2016

techniques (Gaines, 1967; Poppelbaum et al., 1967; Alaghi and

Hayes, 2013; Merkel and Kudithipudi, 2014). It has been shown

that by using two stochastic streams the multiplication operation

can be reduced to a simple AND operation (Gaines, 1967;

Poppelbaum et al., 1967; Alaghi and Hayes, 2013). Figure 1B
illustrates the stochastic update rule where numbers that are

encoded from neurons (x; and §;) are translated to stochastic
bit streams using stochastic translators (STR). Then they are
sent to the crossbar array where each RPU device changes its
conductance (g;;) slightly when bits from x; and §; coincide. In
this scheme we can write the update rule as follows.

BL
Wij <— Wijj + .ﬂwmm Zﬂ:l A Bf {2)

n=1



Previous slide:

This Is a copy of the relevant section of the original publication



The device chalienge

- Create breakdown
(‘mild shortcut)
- Make size of breakdown tunable

w=1/R
Y RESET (v<0)
—
_'_I__/

SET (V>0)

RR

AM V
FORMING
E/

LRS
Courtesy E. Vianello

Initial state

Images: IBM



Previous slide:

Here The material in yellow Is an electrical insulator (dielectric material). However, with a first strong
voltage pulse one can create an initial breakdown (blue channel) in the material.

The guestion now Is the following: Can we SMOOTHLY TUNE

sith several additional medium-sized positive voltage pulse (red), or negative voltage pulse (blue), one
can return to the initial configuration (lower left).
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Experimental demonstration of symmetric and continuous change of G

Images: IBM



Previous slide:

Experimental test with the material at the bottom shows that smooth tuning is possible (blue dots). Horizontal
axis shows the number of pulses applied. After about 200 pulses the sign is switched so that the resistance

goes down again.



5k | ; | ; | ; | ; | ; |

1. Negative sweep to put it in Low-Resistance State Ak

2. Read at 0.2V constantly for 1000s

3. Negative + positive cycle to put it in
increasing High-Resistance State (HRS)

4. Read at 0.2V constantly for 1000s for
each HRS

3k -

R (Q)

2k ' onmmame . -

Intermediate states show no drift up to 1000 s
- We can change values of resistance

- New resistance is reliable over time ° 200 400 800 800 4000
. t

->We can change again )

- 'Online Learning’

5/13/2024
143 Valeria Bragaglia Email: vbr@zurich.ibm.com



Previous slide:

Moreover, after tuning the resistance remains constant



IBM Research
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Previous slide: not shown In class

The road map shows several aspects:

- Traditional scaling has increased not only the compute power, but also reduced the Watt per Flop.
- Traditional scaling expected to come to an end (or may continue, red dots)

- Staying digital, but allowing for approximate computing might give an extra jump in performance

- Going analog would yield a further jump.




The 80-percent question again:

[ | In this hardware part on memristors, at least 60
percent of the material was new to me.

| | for this hardware part, up to here, | have the
feeling that |
understood at least 80 percent of the material



Analog crossbar arrays: Update for BackProp

Electrical crossbar array:
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Previous slide: not shown In class.
To have an impact, local Hebbian rules are not enough.

But one can also extend these ideas to local implementations of BackPROP.
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- Extension from two-factor to three-factor rules possible O(1)!
- Extension to (approximative) Backprop possible O(N)!



Literature of ferroelectrics in AI hardware

. . . Ferroelectric
« 2011: discovery of a ferroelectric phase in HfO.,.

A
« 2017: FeFET integrated in a 28nm HKMG - O
technology (Mulaosmanovic et al., VLS| 2017) FT]
« 2018: IBM: crystallization of HfZrO, in the FE MEE FE Semicond

phase below 400°C (O’'Connor et al., APL
Mater. 6, 121103 (2018))

e« 2020: this work: first demonstration of a BEOL,
CMOS FeFET




Summary

®* Silicon technology remains the basis for computing devices
® Leverage existing processes, infrastructure and know-how
® Continuous extending of materials and function

®* New computing paradigms — Neuromorphic computing -
provides a path to handle unstructured data

® Analog signal processing in crossbar arrays
®* Parallel processing of key algorithms in neural networks
®* Electrical and optical implementations

- Extension to three-factor rule possible!
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Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

Detour: Spiking Neural Networks (SNN)
Example: Navigation in a Maze (Model Study)
Loihi Chip (INTEL)

Memristor chips (IBM)

Memristor chips for toy RL application

O~ E



A recent toy application: Neuromorphic/memristors

a) | REINFORCEMENT LEARNING I
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A recent toy application: Neuromorphic/memristors

- Very small toy application/exploratory lab research

- Digital control

- Memristors that switch from high to low resistance (binary)
- FPGA

-> Very preliminary results, very small size,
but potential for large alternative compute

- WIll this safe energy?




Wulfram Gerstner

Artificial Neural Networks and BL: o
from hrain-style computing to neuromorphic computing

Detour: Spiking Neural Networks (SNN)
Example: Navigation in a Maze (Model Study)
Loihi Chip (INTEL)

Memristor chips (IBM)

Memristor chips for toy RL application

The problem of energy consumption

O 0~ WhE
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brain algorithms
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Energy consumption of the brain

® Sedentary humans eat and use 2500 kCal per day
®* Translate to Joule > 10 000 kJ

®* Brain facts: 20 percent of energy consumption of human at
rest goes into the brain

®* Most of it goes into synaptic signaling (spike transmission)
® Brain uses 24 - 30 Watt (5 modern light bulbs)

The power consumption of the brain is relatively low!
- 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain



https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

Previous slide.
Claim the power consumption of the brain (30W) Is relatively low.

Low compared to what?
- Compare with GPU
= Compare with household power consumption.



Compare: Energy consumption of one GPU

* 300 W (RX 6800/6900 XT)
* 350 W (RTX 3080/3090)

https.//www.tomshardware.com/features/graphics-card-power-consumption-tested



https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Previous slide:



Energy consumption of one GPU

* 300 W (RX 6800/6900 XT)
* 350 W (RTX 3080/3090)

- 10h of training an ANN on 1 GPU = 3.5 kWh
1 day of training an ANN on 1 GPU = 8000Wh =8 kWh

4 months GPU usage > 1000 kWh

12 months GPU usage =2 3000 kWh

https.//www.tomshardware.com/features/graphics-card-power-consumption-tested



https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Previous slide:

A day has 24 hours. So we multiply the power (350W) with the number of hours.

4 months have 120 days. Again a simple multiplication

The guestion then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.



Electrical household energy consumption

Typical Swiss electricity use in household (fridge, TV, light)
- about 1000 kWh per year and person.

® 2 persons sharing apartment = 2200kWh per year
® 4 persons sharing house = 4000kWh per year

Heating/warm water with heat pump
® 4 persons sharing house: 6000kWh per year
- 1500 kWh per year and person

https://pubdb.bfe.admin.ch/de/publication/download/10559



https://pubdb.bfe.admin.ch/de/publication/download/10559

Previous slide:



Comparison

* Brain 30W - 260 kWh per year and person
®* Living in Switzerland - 2500 kWh per year and person
* GPU - 3000 kWh per year and GPU
Problem!!!!

Solution? — use your machine carefully!
- think about better computer architecture!



Previous slide:

The problem is that if you your model optimization uses on average a single GPU over the year, you use
more energy on your GPU than you use by living in a normal rental apartment.



The neural network size explosion
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The compute explosion

led

PetaFLOP/s - Days

le-14

Source:
Openai.com

Petaflop/s-days

le+4
AlphaGo4ero

le+2 Neural Machine

Translation

TI7 Dota 1vl
le+0
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DQN
le-6
TD-Gammon v2.1
iLSTM for Speech
lo-8 LeNet-5
NETtalk RNN for Speech
ALVINN
le-10
le-12 2-year doubling (Moore's Law)
le-14 Perceptron ¢ First Era  Modern Era &
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The power and carbon emission explosion

Neural Architecture Search, 979M Training Steps -
BERT Base, 110M Parameters, Training -
Transformer Big, 213M Parameters, Training -
Transformer Base, 65M Parameters, Training -
Avg. Human Life, 1 Year -

Car, 1 Lifetime, 193000Km -

Avg. Car, 300Km -

Train, 1 Passenger, 300Km -

Air Travel, 1 Passenger, Roundtrip NY - SF -

Beef, 1 Serving -

101 10 103 100 108
Estimated CO2 Emission (Kg)

® Source: E. Strubell et al.,,

oil/lgasoline: 1liter = 10kWh = 2.5 kg CQ22™V:1706.02243

1000 km by plane emits as much CO2 as 1000 km by car.
New York = Geneva = 6200km
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Where can YOU contribute?
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Le Temps, April 2024, Bien au Contraire:
Decarboniser l'aviation

Aviation «verte» et
 publicité trompeuse

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

CONTRE

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

l PIERRE KOHLER
DOCTEUR EN ECONOMIE, FONCTIONNAIRE INTERNATIONAL SPECIALISTE EN COMMERCE ET DU RABILITE

&'l existe une industrie condamnée a devoir
décroitre rapidement pour respecter 'Ac-

cord de Paris, hormis I'industrie fossile et sa
finance, c'est sans aucun doute l'aviation. Les
experts sont unanimes, il n’y a aucune pro-
babilité pour que d'éventuelles technologies
pour «verdir» I'aviation puissent étre dévelop-
pées et déployées a I'échelle requise dans les
délais impartis. Alors, quel sort réserver a cette
industrie climaticide, accessoirement symbole
du «mode de vie impérial» décortiqué par les
auteurs Brand et Wissen?

En 2022, les Prs Nick et Thalmann de 'EPFL
avaient estimé que, pour atteindre l'objectif net
zéro d'ici & 2050, tout en exploitant les avan-
cées technologiques existantes et réalisables,
I'aviation mondiale devrait réduire sa voilure
de 85% et revenir & un niveau d’activité équiva-

oo cahem MNa wlean

I'aéroport de Zurich prévoit de construire une
piste supplémentaire.

Malgré ces développements, les meédias suisses
continuent de jouer le jeu de Bertrand Piccard,
chantre inégalé de l'aviation «verte» et ancien
marchand d’espoir, sans apporter la contradic-
tion journalistique requise. Ce

manquement est difficilement
excusable, car 'homme aux
1000 techno-solutions pour la «B
«transition verte» n'en est pas CON'
4 son coup d’essai. Vingt ans
aprés avoir créé Solar Impulse
en 2004, il ne fait que récidiver Déc
en «innovant» 4 nouveau avec la
Climate Impulse.

Présenté comme un projet & la
pointe de l'innovation techno- Développe
lamiana lave Ao ean laneement. rien plus ve

Interdire laviation¢
Soyons sérieux!

POUR

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

BERTRAND PICCARD
PRESIDENT DE LA FONDATION SOLAR IMPULSE

1| est plus que nécessaire de lutter contre les
émissions de CO2 produites par 'aviation, et I'as-
surance de certains & considérer l'aviation verte
comme impossible me parait étre une simple
répétition du passé.
Le préposé aux brevets de Londres avait
déclaré dans les années 1860

N AU
AIRE»

boner
ition

que tout ce qui pouvait étre
inventé l'avait déja été. Des spé-
cialistes avaient calculé qu'un
aéronef plus lourd que l'air ne
pourrait jamais voler, et ensuite
qu'il warriverait jamais a tra-
verser un océan. On pensait la
généralisation des téléphones
portables utopique parce qu'il

PRGNSR

faire de méme pour des avions. Climate Impulse
egsaiera de stabiliser ce carburant vert a -253
degrés pendant neufjours et cela aura des réper-
cussions cruciales pour I'industrie.

La décarbonation prendra du temps, et il faut
commencer par inclure la charge CO2 dans le
prix des billets, diminuer bien sir cette frénésie
de voler simplement parce que c'est bon marché,
améliorer urgemment les procédures et les opé-
rations. Mais vouloir interdire I'aviation, en plus
du chaos généralisé que cela engendrerait, est
complétement utopique, en Europe et & fortiori
dans le reste du monde, qui ne demande qu'a se
développer davantage. Soyons sérieux! Plutét que
dans I'illusion, engageons-nous dans ce que les

solutions d’aujourd’hui, énergies renouvelables et
hudwaadne an tite nenvent nous nermettre d'ac-



Energy consumption problem (for computing)
will further increase over time!

Solution? — use your machine carefully!
- think more, simulate less!
- Invent better computer architecture!

Global warming is a reality!

- Some regions no longer inhabitable/agriculture
- Big migration waves/relocation

Solution? — tax on CO2
- reliable and predictable increase from 10cent
to 100 dollars over 25 years.
- few countries start, others will follow



Thanks!

The END

... for today. There will be 2 more sessions.




