Markov Chains and Algorithmic Applications: WEEK 6

1 Rate of convergence: proofs

1.1 Reminder

Let ($X_{n}, n \geq 0$) be a Markov chain with state space S and transition matrix P, and consider the following assumptions:

- X is ergodic (irreducible, aperiodic and positive-recurrent), so there exists a stationary distribution π and it is a limiting distribution as well.
- The state space S is finite, $|S|=N$.
- Detailed balance holds $\left(\pi_{i} p_{i j}=\pi_{j} p_{j i} \quad \forall i, j \in S\right)$.

Statement 1.1. Under these assumptions, we have seen that there exist numbers $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{N-1}$ and vectors $\phi^{(0)}, \phi^{(1)}, \ldots, \phi^{(N-1)} \in \mathbb{R}^{N}$ such that

$$
P \phi^{(k)}=\lambda_{k} \phi^{(k)}, \quad k=0, \ldots, N-1
$$

and $\phi_{j}^{(k)}=\frac{u_{j}^{(k)}}{\sqrt{\pi_{j}}}$, where $u^{(0)}, \ldots, u^{(N-1)}$ is an orthonormal basis of $\mathbb{R}^{N}\left(u^{(k)}\right.$ are the eigenvectors of the symmetric matrix Q, where $\left.q_{i j}=\sqrt{\pi_{i}} p_{i j} \frac{1}{\sqrt{\pi_{j}}}\right)$. Note that the $\phi^{(k)}$ do not usually form an orthonormal basis of \mathbb{R}^{N}.

Facts

1. $\phi_{j}^{(0)}=1 \quad \forall j \in S, \quad \lambda_{0}=1 \quad$ and $\quad\left|\lambda_{k}\right| \leq 1 \quad \forall k \in\{0, \ldots, N-1\}$
2. $\lambda_{1}<+1$ and $\lambda_{N-1}>-1$

Definition 1.2. Let us define $\lambda_{*}=\max _{k \in\{1, \ldots, N-1\}}\left|\lambda_{k}\right|=\max \left\{\lambda_{1},-\lambda_{N-1}\right\}$. The spectral gap is defined as $\gamma=1-\lambda_{*}$.

Figure 1: Spectral gap
Theorem 1.3. Under all the assumptions made above, we have

$$
\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}}=\frac{1}{2} \sum_{j \in S}\left|p_{i j}(n)-\pi_{j}\right| \leq \frac{1}{2 \sqrt{\pi_{i}}} \lambda_{*}^{n} \leq \frac{1}{2 \sqrt{\pi_{i}}} e^{-\gamma n}, \quad \forall i \in S, n \geq 1
$$

1.2 Proof of Fact 1

Let us first prove that $\phi_{j}^{(0)}=1 \quad \forall j \in S$ and $\lambda_{0}=1$.
Consider $\phi_{j}^{(0)}=1 \quad \forall j \in S$; we will prove that $\left(P \phi^{(0)}\right)_{i}=\phi_{i}^{(0)}\left(\right.$ so $\left.\lambda_{0}=1\right)$:

$$
\left(P \phi^{(0)}\right)_{i}=\sum_{j \in S} p_{i j} \underbrace{\phi_{j}^{(0)}}_{=1}=\sum_{j \in S} p_{i j}=1=\phi_{i}^{(0)}
$$

Also, we know that $\phi_{i}^{(0)}=\frac{u_{i}^{(0)}}{\sqrt{\pi_{i}}}$, so $u_{i}^{(0)}=\sqrt{\pi_{i}} \phi_{i}^{(0)}=\sqrt{\pi_{i}}$. The norm of $u^{(0)}$ is therefore equal to 1 :

$$
\left\|u^{(0)}\right\|^{2}=\sum_{i \in S}\left(u_{i}^{(0)}\right)^{2}=\sum_{i \in S} \pi_{i}=1
$$

Let us then prove that $\left|\lambda_{k}\right| \leq 1 \quad \forall k \in\{0, \ldots, N-1\}$.
Let $\phi^{(k)}$ be the eigenvector corresponding to λ_{k}. We define i to be such that $\left|\phi_{i}^{(k)}\right| \geq\left|\phi_{j}^{(k)}\right| \quad \forall j \in S$ $\left(\left|\phi_{i}^{(0)}\right|>0\right.$ because an eigenvector cannot be all-zero). We will use $P \phi^{(k)}=\lambda_{k} \phi^{(k)}$ in the following:

$$
\left|\lambda_{k} \phi_{i}^{(k)}\right|=\left|\left(P \phi^{(k)}\right)_{i}\right|=\left|\sum_{j \in S} p_{i j} \phi_{j}^{(k)}\right| \leq \sum_{j \in S} p_{i j} \underbrace{\left|\phi_{j}^{(k)}\right|}_{\leq\left|\phi_{i}^{(k)}\right|, \forall j \in S} \leq\left|\phi_{i}^{(k)}\right| \underbrace{\sum_{j \in S} p_{i j}}_{=1}
$$

So we have $\left|\lambda_{k}\right|\left|\phi_{i}^{(k)}\right| \leq\left|\phi_{i}^{(k)}\right|$, which implies that $\left|\lambda_{k}\right| \leq 1$, as $\left|\phi_{i}^{(k)}\right|>0$.

1.3 Proof of Fact 2

We want to prove that $\lambda_{1}<+1$ and $\lambda_{N-1}>-1$, which together imply that $\lambda_{*}<1$.
By the assumptions made, we know that the chain is irreducible, aperiodic and finite, so $\exists n_{0}>1$ such that $p_{i j}(n)>0, \forall i, j \in S, \forall n \geq n_{0}$.
$\lambda_{1}<+1$:
Assume ϕ is such that $P \phi=\phi$: we will prove that ϕ can only be a multiple of $\phi^{(0)}$, which implies that the eigenvalue $\lambda=1$ has a unique eigenvector associated to it, so $\lambda_{1}<1$. Take i such that $\left|\phi_{i}\right| \geq\left|\phi_{j}\right|$, $\forall j \in S$, and let $n \geq n_{0}$.

$$
\phi_{i}=(P \phi)_{i}=\left(P^{n} \phi\right)_{i} \stackrel{(*)}{=} \sum_{j \in S} p_{i j}(n) \phi_{j}
$$

so

$$
\left|\phi_{i}\right|=\left|\sum_{j \in S} p_{i j}(n) \phi_{j}\right| \leq \sum_{j \in S} p_{i j}(n) \underbrace{\left|\phi_{j}\right|}_{\leq\left|\phi_{i}\right|} \leq\left|\phi_{i}\right| \underbrace{\sum_{j \in S} p_{i j}(n)}_{1}=\left|\phi_{i}\right|
$$

So we have $\left|\phi_{i}\right| \leq \sum_{j \in S} p_{i j}(n)\left|\phi_{j}\right| \leq\left|\phi_{i}\right|$. To have equality, we clearly need to have $\left|\phi_{i}\right|=\left|\phi_{j}\right|, \forall j \in S$ (because $p_{i j}(n)>0$ for all i, j and $\sum_{j \in S} p_{i j}(n)=1$ for all $i \in S$). Because $(*)$ is satisfied, we also have $\phi_{i}=\sum_{j \in S} p_{i j}(n) \phi_{j}$, which in turn implies that $\phi_{j}=\phi_{i}$ for all $j \in S$. So the vector ϕ is constant.
$\lambda_{\mathbf{N}-1}>-1:$
Assume there exists $\phi \neq 0$ such that $P \phi=-\phi$: we will prove that this is impossible, showing therefore that no eigenvalue can take the value -1 . Take i such that $\left|\phi_{i}\right| \geq\left|\phi_{j}\right|, \forall j \in S$ and let n odd be such that $n \geq n_{0}$.

Now, as $P^{n} \phi=P \phi=-\phi$, we have $-\phi_{i} \stackrel{(*)}{=} \sum_{j \in S} p_{i j}(n) \phi_{j}$ and $\left|\phi_{i}\right| \leq \sum_{j \in S} p_{i j}(n)\left|\phi_{j}\right| \leq\left|\phi_{i}\right|$. So, as above, we need to have $\left|\phi_{j}\right|=\left|\phi_{i}\right|$, for all $j \in S$ and then, thanks to $(*), \phi_{j}=-\phi_{i}$, for all $j \in S$. This implies that $\phi_{i}=-\phi_{i}=0$, and leads to $\phi_{j}=0$ for all $j \in S$, which is impossible.

1.4 Proof of the theorem

We will first use the Cauchy-Schwarz inequality which states that

$$
\left|\sum_{j \in S} a_{j} b_{j}\right| \leq\left(\sum_{j \in S} a_{j}^{2}\right)^{1 / 2}\left(\sum_{j \in S} b_{j}^{2}\right)^{1 / 2}
$$

so as to obtain

$$
\begin{aligned}
\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} & =\frac{1}{2} \sum_{j \in S} \underbrace{\left.\frac{p_{i j}(n)-\pi_{j}}{\sqrt{\pi_{j}}} \right\rvert\,}_{a_{j}} \underbrace{\sqrt{\pi_{j}}}_{b_{j}} \leq \frac{1}{2}\left(\sum_{j \in S}\left(\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}-\sqrt{\pi_{j}}\right)^{2}\right)^{1 / 2}(\underbrace{\left(\sum_{j \in S} \pi_{j}\right)^{1 / 2}}_{1} \\
& =\frac{1}{2}\left(\sum_{j \in S}\left(\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}-\sqrt{\pi_{j}}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

Lemma 1.4.

$$
\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}-\sqrt{\pi_{j}}=\sqrt{\pi_{j}} \sum_{k=1}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \phi_{j}^{(k)}
$$

Proof. Remember that $u^{(0)}, \ldots, u^{(N-1)}$ is an orthonormal basis of \mathbb{R}^{N}, so we can write for any $v \in \mathbb{R}^{N}$ $v=\sum_{k=0}^{N-1}\left(v^{T} u^{(k)}\right) u^{(k)}$ i.e. $v_{j}=\sum_{k=0}^{N-1}\left(v^{T} u^{(k)}\right) u_{j}^{(k)}$. For a fixed $i \in S$, take $v_{j}=\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}$. We obtain

$$
\left(v^{T} u^{(k)}\right)=\sum_{j \in S} \frac{p_{i j}(n)}{\sqrt{\pi_{j}}} u_{j}^{(k)}=\sum_{j \in S} p_{i j}(n) \phi_{j}^{(k)}=\left(P^{n} \phi^{(k)}\right)_{i}=\lambda_{k}^{n} \phi_{i}^{(k)}
$$

which in turn implies

$$
v_{j}=\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}=\sum_{k=0}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} u_{j}^{(k)}=\sum_{k=0}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \phi_{j}^{(k)} \sqrt{\pi_{j}}=\underbrace{\lambda_{0}^{n} \phi_{i}^{(0)} \phi_{j}^{(0)}}_{1} \sqrt{\pi_{j}}+\sqrt{\pi_{j}} \sum_{k=1}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \phi_{j}^{(k)}
$$

Let us continue with the proof of the theorem using this lemma.

$$
\begin{aligned}
\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} & \leq \frac{1}{2}\left(\sum_{j \in S}\left(\frac{p_{i j}(n)}{\sqrt{\pi_{j}}}-\sqrt{\pi_{j}}\right)^{2}\right)^{1 / 2}=\frac{1}{2}\left(\sum_{j \in S}\left(\sqrt{\pi_{j}} \sum_{k=1}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \phi_{j}^{(k)}\right)^{2}\right)^{1 / 2} \\
& =\frac{1}{2}\left(\sum_{j \in S} \pi_{j} \sum_{k, l=1}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \phi_{j}^{(k)} \lambda_{l}^{n} \phi_{i}^{(l)} \phi_{j}^{(l)}\right)^{1 / 2}=\frac{1}{2}\left(\sum_{k, l=1}^{N-1} \lambda_{k}^{n} \phi_{i}^{(k)} \lambda_{l}^{n} \phi_{i}^{(l)} \sum_{j \in S} \pi_{j} \phi_{j}^{(k)} \phi_{j}^{(l)}\right)^{1 / 2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{N-1} \lambda_{k}^{2 n}\left(\phi_{i}^{(k)}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

where we have used the fact that $\sum_{j \in S} \pi_{j} \phi_{j}^{(k)} \phi_{j}^{(l)}=\sum_{j \in S} u_{j}^{(k)} u_{j}^{(l)}=\left(u^{(k)}\right)^{T} u^{(l)}=\delta_{k l}$. Remembering now that $\left|\lambda_{k}\right| \leq \lambda_{*}$ for every $1 \leq k \leq N-1$, we obtain

$$
\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \lambda_{*}^{n}\left(\sum_{k=1}^{N-1}\left(\phi_{i}^{(k)}\right)^{2}\right)^{1 / 2}
$$

In order to compute the term in parentheses, remember again that $v_{j}=\sum_{k=0}^{N-1}\left(v^{T} u^{(k)}\right) u_{j}^{(k)}$ for every $v \in \mathbb{R}^{N}$, so by choosing $v=e_{i}$, i.e., $v_{j}=\delta_{i j}=\left\{\begin{array}{cc}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{array}\right.$, we obtain:

$$
v^{T} u^{(k)}=u_{i}^{(k)} \quad \text { and } \quad \delta_{i j}=\sum_{k=0}^{N-1} u_{i}^{(k)} u_{j}^{(k)}
$$

For $i=j$, we get $\delta_{i i}=1=\sum_{k=0}^{N-1}\left(u_{i}^{(k)}\right)^{2}=\sum_{k=0}^{N-1} \pi_{i}\left(\phi_{i}^{(k)}\right)^{2}$, so

$$
\sum_{k=1}^{N-1}\left(\phi_{i}^{(k)}\right)^{2}=\sum_{k=0}^{N-1}\left(\phi_{i}^{(k)}\right)^{2}-\underbrace{\left(\phi_{i}^{(0)}\right)^{2}}_{1}=\frac{1}{\pi_{i}}-1 \leq \frac{1}{\pi_{i}}
$$

which finally leads to the inequality

$$
\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{\lambda_{*}^{n}}{2 \sqrt{\pi_{i}}}
$$

and therefore completes the proof.

1.5 Lazy random walks

Adding self-loops to a Markov chain makes it a priori "lazy". Surprisingly perhaps, this might in some cases speed up the convergence to equilibrium!

Adding self-loops of weight $\alpha \in(0,1)$ to every state has the following impact on the transition matrix: assuming P is the transition matrix of the initial Markov chain, the new transition matrix \widetilde{P} becomes

$$
\widetilde{P}=\alpha I+(1-\alpha) P
$$

As a consequence:

- The eigenvalues also change from λ_{k} to $\widetilde{\lambda}_{k}=\alpha+(1-\alpha) \lambda_{k}$, which sometimes reduces the value of $\lambda_{*}=\max _{1 \leq k \leq N-1}\left|\lambda_{k}\right|$. The spectral gap being equal to $\gamma=1-\lambda_{*}$, we obtain that by reducing λ_{*}, we might increase the spectral gap as well as the convergence rate to equilibrium.
- Note that λ_{0} stays the same: $\widetilde{\lambda}_{0}=\alpha+(1-\alpha) \lambda_{0}=1$, as well as the stationary distribution π :

$$
\pi \widetilde{P}=\pi(\alpha I+(1-\alpha) P)=\alpha \pi+(1-\alpha) \underbrace{\pi P}_{=\pi}=\pi
$$

Example 1.5. Random walk on the circle with $N=3$:

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right) \xrightarrow{\text { add } \alpha} \widetilde{P}=\left(\begin{array}{ccc}
\alpha & \frac{1-\alpha}{2} & \frac{1-\alpha}{2} \\
\frac{1-\alpha}{2} & \alpha & \frac{1-\alpha}{2} \\
\frac{1-\alpha}{2} & \frac{1-\alpha}{2} & \alpha
\end{array}\right)
$$

