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1. a) Let us write by convention that y ~ x if there exists a unique j € 1,...,d such that y; # z;.
Observing that the described process is a random walk on the graph described by the relation ~,
we deduce that the transition matrix of the chain is given by
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The chain is clearly irreducible, aperiodic and positive-recurrent, therefore ergodic. Its stationary
distribution 7 is uniform (i.e. 7, = m~? Va € S), and the detailed balance equation is satisfied.

b) Assume that |z| = k and denote by A the set of indices j € {1,...,d} such that z; # 0 (so that
|A| = k). Then

(Po™) = > pmye) = dZexp 2iy - z/m)
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Observe now that if z; = 0, then
m—1 m—1
Z exp(2miuz;/m) = Z l1=m—1=(m—1) exp(2miz;z;/m)
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while if z; # 0, then
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This finally gives
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The eigenvalue ), corresponding to ¢#) is therefore given by
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¢) The second largest eigenvalue is equal to 1 — ﬁ, while the least eigenvalue is equal to

1—-m —__1_ Whend>?2 (remember also that by assumption, m > 2), the spectral gap is

m—1 m—1"
therefore determined by the second largest eigenvalue and equal to v = ﬁ. This leads to the

following upper bound on the total variation distance:
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which becomes small only when n > cd? log m for some constant ¢ > 0.
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d) The lower bound obtained in class applies here, as \(bg? =1 for all z and z. It reads

1 1 1 nm
175wl 2 520 = 5 exp(om) = 3 exp ()

which is small for n > cd already, so the two bounds do not match.

e*) A tighter upper bound on the total variation distance can be found via the following analysis:
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we finally obtain

1 1 1
5 A exp(—tc) = S Vexp (e7¢)—1

which can be made arbirarily small by taking c large. So finally, the upper bound on the mixing
time is O(d max(logm,logd)).



2. Following what has been done in class, we obtain first
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by retaining only the term £ = 1 in the above sum. Using now the fact that e™ ~ 1 — x for
small, we obtain further

1 2
175" = 7ll2 > exp <2 logd — d:1> = exp(c/2)
for n = % (logd — ¢). The above expression can therefore be made arbitrarily large by taking
¢ > 0 arbitrarily large.



