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1. a) The process Y is a Markov chain. Here is the proof:
P(Yn+1 = j’Yn =4,Yy 1=1%p1,...,Y1 =11,Yy = 0)
= P(S2;, + Xon+1 + Xont2 = j|S2n =4, Son—2 = in—1,...,52 = 11,5 = 0)
=P(Xopt1 + Xopt2 =7 — 1)

and also

P(Yr41 = j|Yn = i) = P(Sont2 = j|S2n = i) = P(Sa2pn + Xont1 + Xont2 = j|Son = 1)
=P(Xopt1 + Xonso=J — 1)

so the process Y is a Markov chain. Moreover,

1/47 if’j—i’ZQ,
P(Xopt1 + Xopro =37 —1) = ¢ 1/2, ifi=j,

0, otherwise.

These probabilities do not depend on n, so the process Y is a time-homogeneous Markov chain.

b) The process Z is a Markov chain. Actually, for n > 0, we have Z,41 = (—1)%Xn+1 =
(=1)% (=1)Xn+1 = —Z,, always, as (—1)Xn+1 = —1, irrespective of the value of X, 11 € {—1,+1}.
The process Z is therefore deterministic, constantly alternating between the two states +1 and —1,
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c) The process T' is not a Markov chain. Here is why: on the one hand, we have (by counting the
number of possible paths):
P(Ty=1,T3=1,T>=1) 3/16 3

PIy=1T3=1T,=1)= P(T5=1,T, =1) - 2/8 4

On the other hand, we have:

P(Ty=1,T3=1,T,=0) 1/16 1
P(T3=1,T,=0)  1/8 2

3
P(Ty = 1|T3 = 1, T, = 0) = # 2

so the process T' is not a Markov chain.

d) The process W is exactly the same as the process Y, so it is a Markov chain.



2. a) Transition matrix:
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Transition graph:

b) X, is independent of X,, if and only if for all (i,j) € S?, it holds that P(X, 11 = j|X, =
i) = P(X,,41 = 7). Therefore, we have the necessary condition P(X,4+1 = 1|X,, = 1) = P(X,,41 =
11X, = 0), that is: 1 — ¢ = p, and thus p+ ¢ = 1.

IL—p p
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dition. Note that the time-homogeneity condition of the Markov chain extends the independence.

Conversely, the transition matrix P = ( ) satisfies the aforementioned independence con-

c) P has the characteristic polynomial xp(X) = ((1 —p) — X)((1 — q) — X) — pq, that is:
Xp(X)=X*—(2-p-¢)X+1-p—gq
whose discriminant is positive since p, ¢ > 0 and:
A=(1+1-p-¢°-4(1l-p-q) =@p+q?

.. . . . 1
Thus there are two distinct eigenvalues: {1,1—p—q}, with respective eigenvectors < 1) and ( p ) .

" (1 0 (1 p )
er‘mngD-(O 1—p—q> andU-(1 —q> we have:

P=UDU!

where:

Thus for n € N:

’ p+yq
d) We have for N € N*:
N N—-1
) _ 1 ( 1-(1-p—q) )
Poo = —— |gN+p(l—-p—g¢q
S = i (1-p-gt =2

Because 0 < p < 1,0 < ¢ < 1, we have |1 —p — ¢| < 1 and thus the second term converges when
N — oo. As for the first term, it converges only when ¢ = 0, which is not the case by assumption.

Therefore:
Sl = o
n>1

and we conclude that state 0 is recurrent.



e) We have:

0~ B, =0 X =~ X1~ 1Xo— )
= P(X,=0,X,_1=--=Xo=1]X; =1,X9=0)P(X; = 1| X, =0)
= P(X,=0,X,1 ==Xz =1[X; = 1)P(X; = 1|X = 0)

= P(X,=0X,-1 =1)P(Xp-1 =1|X,,-2=1)---P(X; = 1|X, =0)
_ {Zh,o pi% pon (n>1)

20,0 (n=1)
thus:
m _ Jpa(l—q)"* (n>1)
% 1—p (n=1)
Then:
_ (n) _ _ —p) =

n>1

We thus find again that state 0 is recurrent.

f) We have:

po = E(To|Xo = 0) = Y nP(Ty = nlXo = 0) = fig) + > nfiy)

n>1 n>2
Notice the following power series relationship for x € (—1,1):

1 d d 1 x
Z:C 1_2 xdxzﬂf Tl - Zna: 1—x)?2
n>0 n>0 n>0

and rewrite the former expression as:

po=E(To|Xo=0) = (1—p)+pg)y (n—2+2)(1—¢)" >

n>2

= (1—p)+pgYy_n(l—q)"+2pg)y (1—¢q)"

n>0 n>0

1—g¢q
2

1
= 1-p+pq +2pq§

in conclusion:

uo:IE(T0|X0:0):1+§

This is finite since ¢ > 0, so state 0 is positive-recurrrent.



g) Considering the two cases:

1. when p4+q = 1, we have fég) = q(1—q)" ' forn > 1, so Tp is a geometric random variable with
parameter ¢ (conditioned on the fact that Xg = 0). Correspondingly, o = E (Tp|Xo =0) = =
So if ¢ is close to 0, then p is close to 1 and there is a higher chance to jump to state 1 and
lower chance to go back to state 0. We see that the mean pg is getting higher in such case.
Conversely, when ¢ is close to 1, p is close to 0 and the process tends to stick to state 0.

2. when p = g we simply have o = 2. Indeed: even if, for instance, p is close to 0 a very unlikely
jump to state 1 means to get stuck in 1 for a proportional ”higher” period - all in all, we get
a mean of 2 steps.

3. a) Let i be a recurrent state and j be another state in the same equivalence class. i and j

(n2)

communicate, so there exist ni,no > 1 such that p(m) > 0 and i
know that

IIAERE

n>1

(n1+ntnz) pg?l) pl(in) pgm, so because of the assumptions made:

> 0. As i is recurrent, we

Besides, for every n > 1, we have pj;

(n14+n+n (n2)
ijjl ? >pJ Zpu pZJQ 00

n>1 n>1

and we therefore also have } -, pgr;) +o00, i.e., j is recurrent.

b) We imitate the proof given in the lectures. Let A,, = {X,, = j} and By, = {X,, = J, X, # 7,
for 1 <r < m}. The events By, are disjoint, so

P(AulXo=i)=> P (AmﬂBT\XO - z)
r=1

= P(An|B,, Xo = i) P(B,|Xo = i) = Y _ P(Ap|X; = j) P(By|Xo = i)

r=1 r=1

where we have used the Markov condition in the last equality. Hence

pw Zp] zJ

Multiplying by s, |s| < 1 and summing over m, we find
Fij(s) = Pjj(s) Fij(s)

which is the desired result.



c)

1. If j is recurrent, we have fj; = 1 by definition and we know from Pj;(s) = 14 Pj;(s)F};(s) that
P;j(1) = 4o00. Then P;j(1) = 400 as long as F;j(1) > 0. This means that anopg) = +o00
for i s.t. fi; > 0 (use Abel’s theorem like in class to take limgy).

2. If j is transient, Pj;(1) < +oo (because fj; < 1) and since Fj;(1) < 1, this means P;;(1) < 400

(7-1) < +00.

which in turn means ), -, D



