Markov Chains and Algorithmic Applications - IC - EPFL

## Solutions 2

1. a) The process Y is a Markov chain. Here is the proof:

$$\mathbb{P}(Y_{n+1} = j | Y_n = i, Y_{n-1} = i_{n-1}, \dots, Y_1 = i_1, Y_0 = 0) 
= \mathbb{P}(S_{2n+2} = j | S_{2n} = i, S_{2n-2} = i_{n-1}, \dots, S_2 = i_1, S_0 = 0) 
= \mathbb{P}(S_{2n} + X_{2n+1} + X_{2n+2} = j | S_{2n} = i, S_{2n-2} = i_{n-1}, \dots, S_2 = i_1, S_0 = 0) 
= \mathbb{P}(X_{2n+1} + X_{2n+2} = j - i)$$

and also

$$\mathbb{P}(Y_{n+1} = j | Y_n = i) = \mathbb{P}(S_{2n+2} = j | S_{2n} = i) = \mathbb{P}(S_{2n} + X_{2n+1} + X_{2n+2} = j | S_{2n} = i)$$
$$= \mathbb{P}(X_{2n+1} + X_{2n+2} = j - i)$$

so the process Y is a Markov chain. Moreover,

$$\mathbb{P}(X_{2n+1} + X_{2n+2} = j - i) = \begin{cases} 1/4, & \text{if } |j - i| = 2, \\ 1/2, & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

These probabilities do not depend on n, so the process Y is a time-homogeneous Markov chain.

**b)** The process Z is a Markov chain. Actually, for  $n \ge 0$ , we have  $Z_{n+1} = (-1)^{S_n + X_{n+1}} = (-1)^{S_n} (-1)^{X_{n+1}} = -Z_n$  always, as  $(-1)^{X_{n+1}} = -1$ , irrespective of the value of  $X_{n+1} \in \{-1, +1\}$ . The process Z is therefore deterministic, constantly alternating between the two states +1 and -1, and

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

c) The process T is not a Markov chain. Here is why: on the one hand, we have (by counting the number of possible paths):

$$\mathbb{P}(T_4 = 1 | T_3 = 1, T_2 = 1) = \frac{\mathbb{P}(T_4 = 1, T_3 = 1, T_2 = 1)}{\mathbb{P}(T_3 = 1, T_2 = 1)} = \frac{3/16}{2/8} = \frac{3}{4}$$

On the other hand, we have:

$$\mathbb{P}(T_4 = 1 | T_3 = 1, T_2 = 0) = \frac{\mathbb{P}(T_4 = 1, T_3 = 1, T_2 = 0)}{\mathbb{P}(T_3 = 1, T_2 = 0)} = \frac{1/16}{1/8} = \frac{1}{2} \neq \frac{3}{4}$$

1

so the process T is not a Markov chain.

d) The process W is exactly the same as the process Y, so it is a Markov chain.

## **2.** a) Transition matrix:

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$

Transition graph:

$$1-p$$
  $\bigcirc 0$   $\bigcirc 1-q$ 

**b)**  $X_{n+1}$  is independent of  $X_n$  if and only if for all  $(i,j) \in S^2$ , it holds that  $\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_{n+1} = j)$ . Therefore, we have the necessary condition  $\mathbb{P}(X_{n+1} = 1 | X_n = 1) = \mathbb{P}(X_{n+1} = 1 | X_n = 1)$ , that is: 1 - q = p, and thus p + q = 1.

Conversely, the transition matrix  $P = \begin{pmatrix} 1-p & p \\ 1-p & p \end{pmatrix}$  satisfies the aforementioned independence condition. Note that the time-homogeneity condition of the Markov chain extends the independence.

c) P has the characteristic polynomial  $\chi_P(X) = ((1-p)-X)((1-q)-X)-pq$ , that is:

$$\chi_P(X) = X^2 - (2 - p - q)X + 1 - p - q$$

whose discriminant is positive since p, q > 0 and:

$$\Delta = (1 + 1 - p - q)^2 - 4(1 - p - q) = (p + q)^2$$

Thus there are two distinct eigenvalues:  $\{1, 1-p-q\}$ , with respective eigenvectors  $\begin{pmatrix} 1\\1 \end{pmatrix}$  and  $\begin{pmatrix} p\\-q \end{pmatrix}$ .

Writing 
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1-p-q \end{pmatrix}$$
 and  $U = \begin{pmatrix} 1 & p \\ 1 & -q \end{pmatrix}$  we have:

$$P = UDU^{-1}$$

where:

$$U^{-1} = \frac{1}{p+q} \begin{pmatrix} q & p \\ 1 & -1 \end{pmatrix}$$

Thus for  $n \in \mathbb{N}$ :

$$p_{0,0}^{(n)} = [P^n]_{0,0} = [UD^nU^{-1}]_{0,0} = \frac{q + p(1 - p - q)^n}{p + q}$$

**d)** We have for  $N \in \mathbb{N}^*$ :

$$\sum_{n=1}^{N} p_{00}^{(n)} = \frac{1}{p+q} \left( qN + p(1-p-q) \frac{1 - (1-p-q)^{N-1}}{p+q} \right)$$

Because 0 , we have <math>|1 - p - q| < 1 and thus the second term converges when  $N \to \infty$ . As for the first term, it converges only when q = 0, which is not the case by assumption. Therefore:

$$\sum_{n\geq 1} p_{00}^{(n)} = +\infty$$

and we conclude that state 0 is recurrent.

**e)** We have:

$$f_{00}^{(n)} = \mathbb{P}(X_n = 0, X_{n-1} = \dots = X_1 = 1 | X_0 = 0)$$

$$= \mathbb{P}(X_n = 0, X_{n-1} = \dots = X_2 = 1 | X_1 = 1, X_0 = 0) P(X_1 = 1 | X_0 = 0)$$

$$= \mathbb{P}(X_n = 0, X_{n-1} = \dots = X_2 = 1 | X_1 = 1) P(X_1 = 1 | X_0 = 0)$$

$$= \dots$$

$$= \mathbb{P}(X_n = 0 | X_{n-1} = 1) P(X_{n-1} = 1 | X_{n-2} = 1) \dots P(X_1 = 1 | X_0 = 0)$$

$$= \begin{cases} p_{1,0} \cdot p_{1,1}^{n-2} \cdot p_{0,1} & (n > 1) \\ p_{0,0} & (n = 1) \end{cases}$$

thus:

$$f_{00}^{(n)} = \begin{cases} pq (1-q)^{n-2} & (n>1) \\ 1-p & (n=1) \end{cases}$$

Then:

$$f_{00} = \sum_{n \ge 1} f_{00}^{(n)} = pq \frac{1}{1 - (1 - q)} + (1 - p) = 1$$

We thus find again that state 0 is recurrent.

f) We have:

$$\mu_0 = \mathbb{E}(T_0|X_0 = 0) = \sum_{n \ge 1} n\mathbb{P}(T_0 = n|X_0 = 0) = f_{00}^{(1)} + \sum_{n \ge 2} nf_{00}^{(n)}$$

Notice the following power series relationship for  $x \in (-1,1)$ :

$$\sum_{n>0} x^n = \frac{1}{1-x} \Longrightarrow x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n>0} x^n = x \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1-x} \Longrightarrow \sum_{n>0} n x^n = \frac{x}{(1-x)^2}$$

and rewrite the former expression as:

$$\mu_0 = \mathbb{E}(T_0|X_0 = 0) = (1-p) + pq \sum_{n\geq 2} (n-2+2)(1-q)^{n-2}$$

$$= (1-p) + pq \sum_{n\geq 0} n(1-q)^n + 2pq \sum_{n\geq 0} (1-q)^n$$

$$= 1 - p + pq \frac{1-q}{q^2} + 2pq \frac{1}{q}$$

in conclusion:

$$\mu_0 = \mathbb{E}(T_0|X_0 = 0) = 1 + \frac{p}{q}$$

This is finite since q > 0, so state 0 is positive-recurrent.

- g) Considering the two cases:
  - 1. when p+q=1, we have  $f_{00}^{(n)}=q\,(1-q)^{n-1}$  for  $n\geq 1$ , so  $T_0$  is a geometric random variable with parameter q (conditioned on the fact that  $X_0=0$ ). Correspondingly,  $\mu_0=\mathbb{E}\left(T_0|X_0=0\right)=\frac{1}{q}$ . So if q is close to 0, then p is close to 1 and there is a higher chance to jump to state 1 and lower chance to go back to state 0. We see that the mean  $\mu_0$  is getting higher in such case. Conversely, when q is close to 1, p is close to 0 and the process tends to stick to state 0.
  - 2. when p = q we simply have  $\mu_0 = 2$ . Indeed: even if, for instance, p is close to 0 a very unlikely jump to state 1 means to get stuck in 1 for a proportional "higher" period all in all, we get a mean of 2 steps.
- **3.** a) Let i be a recurrent state and j be another state in the same equivalence class. i and j communicate, so there exist  $n_1, n_2 \ge 1$  such that  $p_{ji}^{(n_1)} > 0$  and  $p_{ij}^{(n_2)} > 0$ . As i is recurrent, we know that

$$\sum_{n\geq 1} p_{ii}^{(n)} = +\infty$$

Besides, for every  $n \ge 1$ , we have  $p_{jj}^{(n_1+n+n_2)} \ge p_{ji}^{(n_1)} p_{ii}^{(n)} p_{ij}^{(n_2)}$ , so because of the assumptions made:

$$\sum_{n\geq 1} p_{jj}^{(n_1+n+n_2)} \geq p_{ji}^{(n_1)} \left(\sum_{n\geq 1} p_{ii}^{(n)}\right) p_{ij}^{(n_2)} = +\infty$$

and we therefore also have  $\sum_{n\geq 1} p_{jj}^{(n)} = +\infty$ , i.e., j is recurrent.

**b)** We imitate the proof given in the lectures. Let  $A_m = \{X_m = j\}$  and  $B_m = \{X_m = j, X_r \neq j, \text{ for } 1 \leq r < m\}$ . The events  $B_m$  are disjoint, so

$$\mathbb{P}(A_m|X_0 = i) = \sum_{r=1}^{m} \mathbb{P}\left(A_m \bigcap B_r \mid X_0 = i\right)$$

$$= \sum_{r=1}^{m} \mathbb{P}(A_m|B_r, X_0 = i) \, \mathbb{P}(B_r|X_0 = i) = \sum_{r=1}^{m} \mathbb{P}(A_m|X_r = j) \, \mathbb{P}(B_r|X_0 = i)$$

where we have used the Markov condition in the last equality. Hence

$$p_{ij}^{(m)} = \sum_{r=1}^{m} p_{jj}^{(m-r)} f_{ij}^{(r)}$$

Multiplying by  $s^m$ , |s| < 1 and summing over m, we find

$$P_{ij}(s) = P_{jj}(s) F_{ij}(s)$$

4

which is the desired result.

**c**)

- 1. If j is recurrent, we have  $f_{jj}=1$  by definition and we know from  $P_{jj}(s)=1+P_{jj}(s)F_{jj}(s)$  that  $P_{jj}(1)=+\infty$ . Then  $P_{ij}(1)=+\infty$  as long as  $F_{ij}(1)>0$ . This means that  $\sum_{n\geq 0}p_{ij}^{(n)}=+\infty$  for i s.t.  $f_{ij}>0$  (use Abel's theorem like in class to take  $\lim_{s\uparrow 1}$ ).
- 2. If j is transient,  $P_{jj}(1) < +\infty$  (because  $f_{jj} < 1$ ) and since  $F_{ij}(1) \le 1$ , this means  $P_{ij}(1) < +\infty$  which in turn means  $\sum_{n\ge 0} p_{ij}^{(n)} < +\infty$ .