Video-Based People Tracking

P. Fua EPFL IC-CVLab

Video-Based Tracking Challenges

- Thousands of frames
- Frequent occlusions
- Poor quality of input images
- Sudden illumination changes

Multi-Step Algorithm

Given cameras with overlapping fields of view and a discretized ground plane.

- Estimate ground occupancy probabilities in individual temporal time frames.
- Enforce temporal consistency under very weak assumptions.
- Assign identity and/or behavior.

Ground Occupancy

Input: Binary images

Output: Probability of Occupancy Map

Bayesian Formulation

Provide probabilistic estimates of

$$P(X_1,...,X_N \mid B_1,...,B_C)$$
 with $\begin{cases} X_i \text{ occupancy of location } i \\ B_j \text{ binary images from camera } j \end{cases}$

- For individual multi-view time frames.
- Given very noisy binary images.
- Using blob sizes to estimate distance.
- Consistent occlusion handling.

Generative Model

There are exactly three people at three different locations.

Interpretation

Finds $P(\mathbf{X} | \mathbf{B})$ such that the average synthetic image matches the binary images.

→ Solution of a fixed point problem

Four Cameras Looking at the Court

Enforcing Temporal Consistency

Graph-Based Formulation

- People can transition from one location at one time to a neighboring one at the next instant.
- They can only enter and leave through virtual locations that correspond to exit or entrances.
- They are more likely to pass through high-probability locations.

Linear Program

$$\begin{split} \text{Maximize} \quad & \sum_{t,i} \log \left(\frac{\rho_i^t}{1 - \rho_i^t} \right) \sum_{j \in \mathcal{N}(i)} f_{i,j}^t \\ \text{subject to} \quad & \forall t, i, j, \ f_{i,j}^t \geq 0 \\ & \forall t, i, \ \sum_{j \in \mathcal{N}(i)} f_{i,j}^t \leq 1 \\ & \forall t, i, \ \sum_{j \in \mathcal{N}(i)} f_{i,j}^t - \sum_{k: i \in \mathcal{N}(k)} f_{k,i}^{t-1} \leq 0 \\ & \sum_{j \in \mathcal{N}(v_{\text{source}})} f_{v_{\text{source}},j} - \sum_{k: v_{\text{sink}} \in \mathcal{N}(k)} f_{k,v_{\text{sink}}} \leq 0 \end{split} .$$

—> Can be solved in real-time using the K-Shortest Path Algorithm (KSP)!

Four Cameras Looking at the Court

Soccer

- Color-based appearance models.
- 2 goal keepers, 2 sets of 10 players each, 3 referees.

Handball

Monocular Result

Preserving Identity

- Read the numbers on the jersey whenever possible.
- In practice, not very often.

Linear Program

Appearance information used when available:

maximize
$$\sum_{t,i,l} \log \left(\frac{\rho_i(t) \varphi_i^l(t) L}{1 - \rho_i(t)} \right) \sum_{j \in \mathcal{N}(i)} f_{i,j}^l(t)$$

subject to
$$\forall t, i, \sum_{j \in \mathcal{N}(i)} \sum_{l=1}^{L} f_{i,j}^{l}(t) \leq 1$$

$$\forall t, l, i, \sum_{j \in \mathcal{N}(i)} f_{i,j}^l(t) - \sum_{k:i \in \mathcal{N}(k)} f_{k,i}^l(t-1) \le 0$$

$$\sum_{j \in \mathcal{N}(v_{\text{source}})} f_{v_{\text{source}},j} - \sum_{k:v_{\text{sink}} \in \mathcal{N}(k)} f_{k,v_{sink}} \le 0$$

$$\forall t, l, \quad \sum_{i=1}^{K} \sum_{j \in \mathcal{N}(i)} f_{i,j}^l(t) \leq N_l$$

$$\forall t, l, i, j, f_{i,j}^l(t) \geq 0$$
.

Probability of belonging to a specific group.

Solving the LP in Real Time

- Run the KSP algorithm to select grid cells that are occupied.
- Segment the resulting trajectories into a set of tracklets that form en even more reduced graph.
- Solve the LP on the reduced graph.

Basketball

- Read the numbers on the jersey whenever possible.
- In practice, not very often.

Facial Identification

Facial Identification

Tracking the Ball

Ambiguity

Motion Blur

Occlusion

Using Additional Knowledge

Model both the

- physics of the ball's motion,
- interactions between ball and players.

Volleyball

Other Sports

Tech Transfer

- 2014: PlayfulVision founded.
- 2015: Acquired by SecondSpectrum.
 - 2016: Player tracking deal announced by the NBA.

Deep Background Subtraction

Conclusion

- Robust approach that can track arbitrary number of people over long periods of time.
- Does not require appearance information but can use it when available.
- Can handle the interaction between people and other moving objects.
- Real-time performance when using tracklets.

—> In use at the NBA and being extended to return 3D pose.

References and Code

- F. Fleuret, J. Berclaz, R. Lengagne and P. Fua, **Multi-Camera People Tracking with a Probabilistic Occupancy Map**, PAMI 2008.
- J. Berclaz, F. Fleuret, E. Türetken and P. Fua, **Multiple**Object Tracking using K-Shortest Paths, PAMI 2011.
- H. Ben Shitrit, J. Berclaz, F. Fleuret, and P. Fua, **Multi-Commodity Network Flow for Tracking Multiple People**, PAMI 2014.
- X. Wang, E. Turetken, F. Fleuret, and P. Fua. **Tracking Interacting Objects Using Intertwined Flows**, *PAMI* 2016.
- Code can be downloaded from
 - -http://cvlab.epfl.ch/software/pom/index.php
 - -http://cvlab.epfl.ch/software/ksp/index.php

