Analyse avancée II – Série 10B

Remarque: dans ce cours, des difféomorphismes sont par convention toujours de classe C^1 .

Échauffement. (Théorème de la fonction réciproque)

Énoncer le théorème de la fonction réciproque (voir §5.4.3 du cours). Donner un exemple d'une fonction $f: \mathbb{R} \to \mathbb{R}$ qui est continûment différentiable, strictement monotone et surjective, mais ne satisfait pas les conditions du théorème.

Exercice 1. (Théorème de la fonction réciproque)

Soit la fonction $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$F(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}.$$

- i) Montrer que F admet dans un voisinage du point (1,0) une fonction réciproque, et que cette fonction réciproque locale est de classe C^1 .
- ii) Est-ce que F admet une fonction réciproque globale?

Exercice 2. (Théorème de la fonction réciproque)

Soient $U, V, W \subset \mathbb{R}^n$ des ouverts, et soient $\phi \in C^1(U, V)$ et $\psi \in C^1(V, W)$ deux difféomorphismes. Montrer que $\psi \circ \phi$ est un difféomorphisme.

Exercice 3. (Théorème de la fonction réciproque)

Soit $f \in C^2(\mathbb{R}, \mathbb{R})$ et soit $x_0 \in \mathbb{R}$ tel que $f'(x_0) \neq 0$. Par le théorème de la fonction réciproque il existent donc des voisinages $U \subset \mathbb{R}$ de x_0 et $V \subset \mathbb{R}$ de $f(x_0)$ et une fonction réciproque locale $g \colon V \to U$. Montrer que $g \in C^2(V, U)$.

Exercice 4. (Difféomorphismes et orientation)

Soient $U, V \subset \mathbb{R}^n$ des ouverts et $\psi \colon U \to V$ un difféomorphisme de classe C^1 . Si $\det(J_{\psi})$ est strictement positif sur U on dit que ψ "préserve l'orientation", et si $\det(J_{\psi})$ est strictement négatif sur U on dit que ψ "renverse l'orientation".

- i) Montrer que si U est connexe par arc, alors soit ψ préserve l'orientation, soit ψ renverse l'orientation.
- ii) Trouver des ouverts $U, V \subset \mathbb{R}^n$ qui ne sont pas connexes par arcs et un difféomorphisme $\psi \colon U \to V$ qui ne ni préserve ni renverse l'orientation.