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Problem Set 1

For the Exercise Session on September 19
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Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf pxy (z,y).
Let a,b € R be fixed.

(a) Prove that E[aX + bY] = aE[X] + DE[Y]. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then E[X - Y] = E[X] - E[Y].

(c) Assume that X and Y are not independent. Find an example where E[X - Y] # E[X] - E[Y], and
another example where E[X - Y] = E[X] - E[Y].

(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = 0. (1)

(e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let 0% and o2 be the variances of X and Y, respec-
tively. Find the variance of aX + bY and express it in terms of 0%,0%,a,b.
Hint: First show that Cov(X,Y) =E[X - Y] - E[X] - E[Y].

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

px(z) = e 207 (2)

is called a Gaussian random variable.

(a) Explicitly calculate the mean E[X], the second moment E[X?], and the variance Var[X] of the
random variable X.

(b) Let us now consider events of the following kind:
Pr(X < a). (3)

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will
rewrite it in terms of the standard Q-function:

Qz) = /:O L% (1)



Express Pr(X < a) in terms of the Q-function and the parameters m and o2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have
bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds,
learning some very general and powerful tools along the way:

(c) Derive the Markov inequality, which says that for any non-negative random variable X and positive
a, we have

E[X]

Pr(X >a) <
a

(5)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable
Z exceeds b is given by

Pr(Z >b) <E[efZD],  s>o0. (6)

(e) Use the Chernoff bound to show that

N

z

Qx)<e T forax>0. (7)
Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

#(s) :==InE[exp(sX)] = anp(as) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ¢'(s) = E[X,] where X
is arandom variable taking the same values as X but with probabilities ps(x) := p(z) exp(sz) exp(—(s)) .

(a) Show that
¢"(s) = Var(X,) := E[X?] — E[X,]?

and conclude that ¢”/(s) > 0 and the inequality is strict except when X is deterministic.
(b) Let @pin := min{z : p(z) > 0} and Tpax := max{z : p(z) > 0} be the smallest and largest values

X takes. Show that

lim ¢'(s) = Tmin, and lim ¢'(s) = Tyax-
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Problem 4: Hoeffding’s Lemma

Prove Lemma 2.3 in the lecture notes. In other words, prove that if X is a zero-mean random vari-
able taking values in [a,b] then

B[] < o l(a=b)?/4]

Expressed differently, X is [(a — b)?/4]-subgaussian.

Hint: You can use the following steps to prove the lemma:

1.

Let A > 0. Let X be a random variable such that a < X <b and E[X] = 0. By considering the
convex function z — e**, show that

b a
AX] < Xa _ b
Ele ]_b—ae ot (8)

. Let p=—a/(b—a) and h = A\(b— a). Verify that the right-hand side of (8) equals e“(") where

L(h) = —hp +log(1 — p + pe™).
By Taylor’s theorem, there exists £ € (0, h) such that
h2
L(h) = L(0) + hL'(0) + EL”(Q'

Show that L(h) < h?/8 and hence E[e*¥] < N (b-a)*/8

Problem 5: Expected Maximum of Subgaussians

Let {X;}", be a collection of n o?-subgaussian random variables, not necessarily independent of
each other. Let Y = max;c(12,... nj Xi. Prove that E[Y] < y/202logn. Hint: Recall that by Jensen,
e)\]]i[X] < E[e)‘x].



