Markov Chains and Algorithmic Applications: WEEK 11

1 Application: Graph coloring

Let $G=(V, E)$ be a graph with vertex set $V(|V|=N)$ and edge set E. We want to color each vertex of the graph with one of the q colors at our disposal such that a vertex's color differs from that of all its neighbors, as seen below:

More formally, let S be the set of all possible color configurations on G and $x=\left(x_{v}, v \in V\right) \in S$ a particular color configuration. A proper q-coloring of G is any configuration x such that $\forall v, w \in V$, if $(v, w) \in E$ then $x_{v} \neq x_{w}$.

Our aim: to sample uniformly amongst the proper q-colorings of G. In other words, we want to sample from the distribution

$$
\pi(x)=\frac{\mathbb{1}_{\{x \text { is a proper } q \text {-coloring }\}}}{Z=\sharp \text { proper } q \text {-colorings }}, \quad x \in S
$$

Remark 1.1. Let $\Delta=\max _{v \in V} \operatorname{deg}(v)$. If $q \geq \Delta+1$, then there exists at least one proper q-coloring.
In what follows, we are going to restrict our analysis to graphs satisfying $q>3 \Delta$.
One way to sample from π is by using the following algorithm:

1. Start from a proper q-coloring $x \in S$.
2. Select a vertex $v \in V$ uniformly at random.
3. Select a color $c \in\{1, \ldots, q\}$ uniformly at random.
4. If c is an allowed color at v, then recolor v (i.e. set $x_{v}=c$); do nothing otherwise.
5. Repeat steps 2,3 and 4.

Remark 1.2. Since the algorithm started from a proper q-coloring $x \in S$, every visited state is also a proper q-coloring.

Remark 1.3. The algorithm could also be used to find a proper q-coloring on G. Indeed, if we start the algorithm in a state $x^{\prime} \in S$ that is not a proper coloring, the algorithm ensures that eventually a proper coloring will be reached.

Definition 1.4. Let $x, y \in S$ be two color configurations. We write $x \sim y$ if x and y differ in at most one vertex.

Remark 1.5. The algorithm is actually an instance of the Metropolis-Hastings algorithm:

1. Let the base chain be $\psi_{x y}= \begin{cases}\frac{1}{N q} & y \sim x, y \neq x, \\ \frac{1}{q} & y=x, \\ 0 & \text { otherwise } .\end{cases}$
ψ is aperiodic (due to self-loops) and satisfies $\psi_{x y}>0$ iff $\psi_{y x}>0$ (due to symmetry). Moreover, the condition $q>3 \Delta$ ensures that ψ is irreducible.
2. $a_{x y}=\min \left(1, \frac{\pi_{y}}{\pi_{x}}\right)=\min \left(1, \frac{\mathbb{1}_{\{y \text { is a proper } q \text {-coloring }\}} / Z}{1 / z}\right)=\mathbb{1}_{\{y \text { is a proper } q \text {-coloring }\}}$.
(NB: we already know that x is a proper q-coloring).
3.

$$
\begin{aligned}
p_{x y} & = \begin{cases}\psi_{x y} a_{x y} & y \neq x, \\
1-\sum_{z \in S \backslash x} \psi_{x z} a_{x z} & y=x\end{cases} \\
& = \begin{cases}\frac{1}{N q} \mathbb{1}_{\{y \text { is a proper } q \text {-coloring }\}} & y \sim x, y \neq x, \\
1-\frac{1}{N q} \sharp\{z \sim x, z \neq x, z \text { proper } q \text {-coloring }\} & y=x \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

1.1 Convergence rate analysis

The mixing time of this chain is $T_{\epsilon}=\inf \left\{n \geq 1: \max _{x \text { proper } q \text {-coloring }}\left\|P_{x}^{n}-\pi\right\|_{\mathrm{TV}} \leq \epsilon\right\}$.
Theorem 1.6. If $q>3 \Delta$, then for all proper q-colorings $x,\left\|P_{x}^{n}-\pi\right\|_{\mathrm{TV}} \leq N e^{-\frac{n}{N}\left(1-\frac{3 \Delta}{q}\right)}$, implying that

$$
T_{\epsilon} \leq \frac{1}{1-\frac{3 \Delta}{q}} N\left(\log (N)+\log \left(\frac{1}{\epsilon}\right)\right)
$$

Proof. Let $\left(X_{n}, n \geq 0\right)$ be a Markov chain on S starting at $X_{0}=x$ (a proper q-coloring) and evolving according to P. Let $\left(Y_{n}, n \geq 0\right)$ be a Markov chain on S starting at $Y_{0} \sim \pi$ and also evolving according to P.

We will couple X and Y as follows:

1. Select a vertex $v \in V$ uniformly at random.
2. Select a color $c \in\{1, \ldots, q\}$ uniformly at random.
3. Update X at vertex v if c is an allowed color.

Update Y at vertex v if c is an allowed color.
Definition 1.7. The Hamming distance between two colorings x and y is the number of positions in which x and y disagree:

$$
d(x, y)=\sum_{v \in V} \mathbb{1}_{\left\{x_{v} \neq y_{v}\right\}}
$$

By a coupling argument seen in previous lectures, we have

$$
\left\|P_{x}^{n}-\pi\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{n} \neq Y_{n}\right)=\mathbb{P}\left(d\left(X_{n}, Y_{n}\right) \geq 1\right) \leq \mathbb{E}\left(d\left(X_{n}, Y_{n}\right)\right)
$$

where the last inequality is obtained by using the Markov inequality.
All that is left to do now is to upper bound $\mathbb{E}\left(d\left(X_{n}, Y_{n}\right)\right)$. We will do so using two inductions:

1. Assume first that $d\left(X_{0}, Y_{0}\right)=1$, i.e. X_{0} and Y_{0} differ at one vertex only, and let v be that vertex. Due to the coupling, at most one vertex can change color per transition, hence $d\left(X_{1}, Y_{1}\right) \in\{0,1,2\}$ and

$$
\begin{aligned}
\mathbb{E}\left(d\left(X_{1}, Y_{1}\right)\right) & =0 \cdot \mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=0\right)+1 \cdot \mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=1\right)+2 \cdot \mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=2\right) \\
& =\left(1-\mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=0\right)\right)+\mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=2\right)
\end{aligned}
$$

$d\left(X_{1}, Y_{1}\right)=0$ if and only if vertex v is chosen (with probability $\frac{1}{N}$) and that the color c chosen is allowed in both chains X and Y, hence

$$
\mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=0\right)=\frac{1}{N} \cdot \frac{\sharp \text { allowed colors at } v}{q} \geq \frac{1}{N} \cdot \frac{q-\Delta}{q}
$$

$d\left(X_{1}, Y_{1}\right)=2$ if and only if the vertex w chosen is a neighbor of v (because $p_{i j}=0$ when $i \nsim j$) and that either X or Y is recolored (but not both). The latter only happens when the chosen color c satisfies $c=x_{v}$ or $c=y_{v}$, so we have

$$
\mathbb{P}\left(d\left(X_{1}, Y_{1}\right)=2\right) \leq \frac{\Delta}{N} \cdot \frac{2}{q}
$$

Gathering both estimates together, we obtain

$$
\mathbb{E}\left(d\left(X_{1}, Y_{1}\right)\right) \leq\left(1-\frac{1}{N} \frac{q-\Delta}{q}\right)+\frac{\Delta}{N} \frac{2}{q}=1-\frac{1}{N}\left(1-\frac{3 \Delta}{q}\right)
$$

2. Suppose now that $d\left(X_{0}, Y_{0}\right)=r$. Since P describes an irreducible Markov chain, there exists a sequence of $r-1$ states $Z_{0}^{(1)}, \ldots, Z_{0}^{(r-1)}$ such that

$$
\begin{gathered}
p_{X_{0} Z_{0}^{(1)}} p_{Z_{0}^{(1)} Z_{0}^{(2)} \cdots p_{Z_{0}^{(r-1)} Y_{0}}>0} \\
d\left(X_{0}, Z_{0}^{(1)}\right)=d\left(Z_{0}^{(1)}, Z_{0}^{(2)}\right)=\cdots=d\left(Z_{0}^{(r-1)}, Y_{0}\right)=1
\end{gathered}
$$

This implies that

$$
\begin{aligned}
\mathbb{E}\left(d\left(X_{1}, Y_{1}\right)\right) & \leq \mathbb{E}\left(d\left(X_{1}, Z_{1}^{(1)}\right)\right)+\mathbb{E}\left(d\left(Z_{1}^{(1)}, Z_{1}^{(2)}\right)\right)+\cdots+\mathbb{E}\left(d\left(Z_{1}^{(r-1)}, Y_{1}\right)\right) \\
& =r\left(1-\frac{1}{N}\left(1-\frac{3 \Delta}{q}\right)\right)
\end{aligned}
$$

3. This inequality is valid between times 0 and 1 , but it also holds between times n and $n+1$:

$$
\mathbb{E}\left(d\left(X_{n+1}, Y_{n+1}\right) \mid d\left(X_{n}, Y_{n}\right)=r\right) \leq r\left(1-\frac{1}{N}\left(1-\frac{3 \Delta}{q}\right)\right)
$$

From the above, we deduce that

$$
\begin{aligned}
\mathbb{E}\left(d\left(X_{n+1}, Y_{n+1}\right)\right) & \leq\left(1-\frac{1}{N}\left(1-\frac{3 \Delta}{q}\right)\right) \mathbb{E}\left(d\left(X_{n}, Y_{n}\right)\right) \\
\Longrightarrow \mathbb{E}\left(d\left(X_{n}, Y_{n}\right)\right) & \leq \mathbb{E}\left(d\left(X_{0}, Y_{0}\right)\right)\left(1-\frac{1}{N}\left(1-\frac{3 \Delta}{q}\right)\right)^{n} \\
& \leq N e^{-\frac{n}{N}\left(1-\frac{3 \Delta}{q}\right)}
\end{aligned}
$$

which completes the proof.

