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1. a) Starting from the base chain whose transition probabilities are

ψxy =

{
1/d if y ∼ x
0 otherwise

we set out to sample (approximately) from the distribution πβ(x) = exp(−βf(x))/Zβ, where Zβ is
the normalization constant.

The acceptance probabilities are given by

axy = min{1, exp(−β(f(y)− f(x))}, (for y ∼ x)

so the transition probabilities of the Metropolis chain are given by

pxy =


(1/d) min{1, exp(−β(f(y)− f(x))} if y ∼ x
(1/d)

∑
z∼x(1−min{1, exp(−β(f(z)− f(x))}) if y = x

0 otherwise

Running then the Metropolis chain for a carefully chosen duration and sampling from it, we obtain
an approximate sample x of πβ which, for a carefully chosen value of β, should give a reasonably
low value of f(x).

b) In this particular case (which by the way does not really need the Metropolis algorithm, as the
function f is quite easy to minimize here!), we obtain

axy =


exp(−β) if |y| = |x|+ 1

1 if |y| = |x| − 1

0 otherwise

and therefore

pxy =


(1/d) exp(−β) if |y| = |x|+ 1

1/d if |y| = |x| − 1

(1/d)
∑

z:|z|=|x|+1(1− exp(−β)) = d−|x|
d (1− exp(−β)) if y = x

0 otherwise

c) In this case, πβ reads
πβ(x) = exp(−β|x|)/Zβ

with normalization constant

Zβ =
∑
x∈S

exp(−β|x|) =
∑

x1,...,xd∈{0,1}

exp(−β(x1 + . . .+ xd)) =

 ∑
x1∈{0,1}

exp(−βx1)

d

= (1 + e−β)d
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2. a) The transition probabilities are given by

p01 = ψ01 min
(

1, ψ10π1
ψ01π0

)
= e−2β

2 p21 = ψ21 min
(

1, ψ12π1
ψ21π2

)
= e−β

2

p10 = ψ10 min
(

1, ψ01π0
ψ10π1

)
= 1

2 p12 = ψ12 min
(

1, ψ21π2
ψ12π1

)
= 1

2

p02 = p20 = p11 = 0 p00 = 1− e−2β

2 p22 = 1− e−β

2

(1)

b) Let us now check that the detailed balance equation is satisfied:

p01π0 =
1

2
e−2β = p10π1

p02π0 = 0 = p20π2

p12π1 =
1

2
e−2β = p21π2.

c) As usual, there are several methods to compute the eigenvalues. For example, one can find the
three solutions λ0, λ1, and λ2 to the equation

det(P − λI) = 0, (2)

where I is the 3 × 3 identity matrix and P the matrix of the transition probabilites computed in
(1).

Another (perhaps even simpler method) method is to solve the following system of equations:
λ0 = 1
λ0 + λ1 + λ2 = tr(P)
λ0 · λ1 · λ2 = det(P )

,

as we know that the largest eigenvalue is 1, the sum of the eigenvalues equals the trace of P , and
their product equals the determinant of P .

Consequently, we obtain

λ0 = 1

λ1 = −e
−2β

4
− e−β

4
+

1

2
+

1

4

√
e−4β − 2e−3β + e−2β + 4

λ2 = −e
−2β

4
− e−β

4
+

1

2
− 1

4

√
e−4β − 2e−3β + e−2β + 4

,

d) The spectral gap is given by

γ = 1− λ1 =
1

2
+
e−2β

4
+
e−β

4
− 1

4

√
e−4β − 2e−3β + e−2β + 4. (3)

Therefore, when β is large, we have

γ ≈ 1

4
e−β. (4)

Remark. The value of β has to be tuned carefully and there is an inherent trade-off in its choice.
If we pick β too large, then the spectral gap is small and the convergence to the global minimum
occurs very slowly, which reflects the fact that we might get stuck in the local minimum (=state 2).
On the other hand, if we pick β too small, then convergence is fast, but the stationary distribution
is close to uniform in this case, so there is no guarantee that we land in the global minimum either!
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