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Problem Set 4 (Graded) —Due Tuesday, November 7, before class starts
For the Exercise Sessions on Oct 24 and Oct 31

Last name First name SCIPER Nr Points

Problem 1: Epsilon-Greedy Algorithm

Recall our original explore-then-exploit strategy. We had a fixed time horizon n . For some m , a function
of n and the gaps {∆k} , we explore each of the K arms m times initially. Then we pick the best
arm according to their empirical gains and play this arm until we reach round n . We have seen that
this strategy achieves an asymptotic regret of order ln(n) if the environment is fixed and we think of n
tending to infinity but a worst-case regret of order

√
n if we use the gaps when determining m and of

order n
2
3 if we do not use the gaps in order to determine m .

Here is a slightly different algorithm. Let εt = t−
1
3 . For each round t = 1, . . . , toss a coin with success

probability εt . If success, then explore arms uniformly at random. If not success, then pick in this round
the arm that currently has the highest empirical average.

Show that for this algorithm the expected regret at any time t is upper bounded by t
2
3 times terms in

t and K of lower order. This is a similar to the worst-case of the explore-then-exploit strategy but here
we do not need to know the horizon a priori. Assume that the rewards are in [0, 1] .

Solution 1. The expected regret has two components. The first component is due to the fact if the
coin toss results in success then explore. In this case we can get a regret of at most 1 . Therefore, this
contribution can be upper bounded by

t∑
i=1

i−
1
3 ≤ 1 +

∫ t

1

x−
1
3 dx ≤ 3

2
t

2
3 .

The second contribution comes from the exploitation phase.

Let Bt ∈ {0, 1} denote the result of coin-toss at round t with P{Bt = 1} = εt (success) and P{Bt =
0} = 1− εt (fail). Then the average regret at time t with Xt as the reward for the round t is

Rt = tµ∗ − E[

t∑
i=1

Xi]

= tµ∗ −
t∑
i=1

E[E[Xi|Bi]]

= tµ∗ −
t∑
i=1

(E[Xi|Bi = 1]P{Bi = 1}+ E[Xi|Bi = 0]P{Bi = 0})

= tµ∗ −
t∑
i=1

εiE[Xi|Bi = 1]−
t∑
i=1

(1− εi)E[Xi|Bi = 0]
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Note that given Bi = 1 , Xi is the reward that we uniformly pick an arm. Hence

E[Xi|Bi = 1] =
1

K

K∑
k=1

µk

Note that given Bi = 0 , Xi is the reward that we pick the arm that has highest empirical average.
Hence

E[Xi|Bi = 0] =

K∑
k=1

µkP{k = arg max
j
µ̂j(i− 1)}

where ûj(i− 1) is the empirical estimator of µj arm j until round i− 1 . We assume that arm 1 has
the largest expected reward, µ∗ = µ1 . Since the probability that the empirical mean converges to the
real mean grows with the number of samples, and consequently so does the probability that we choose
the arm with the largest mean. Then:

P{k = arg max
j
µ̂j(i− 1)}

≤P{µ̂1(i− 1)− µ̂k(i− 1) ≤ 0}

=P

 1

T1(i− 1)

T1(i−1)∑
j=1

X
(1)
j −

1

Tk(i− 1)

Tk(i−1)∑
j=1

X
(k)
j ≤ 0


=E

1
 1

T1(i− 1)

T1(i−1)∑
j=1

X
(1)
j −

1

Tk(i− 1)

Tk(i−1)∑
j=1

X
(k)
j ≤ 0




(a)
=E

E
1
 1

T1(i− 1)

T1(i−1)∑
j=1

(X
(1)
j − µ1)− 1

Tk(i− 1)

Tk(i−1)∑
j=1

(X
(k)
j − µj) ≤ µ1 − µk

∣∣∣∣∣∣T1(i− 1), Tk(i− 1)


(b)

≤E

e− 1
2

∆2
k

1
4T1(i−1)

+ 1
4Tk(i−1)


≤P
[
T1(i− 1) < (i− 1)2/3/K ∨ Tk(i− 1) < (i− 1)2/3/K

]
× 1

+ P
[
T1(i− 1) ≥ (i− 1)2/3/K ∧ Tk(i− 1) ≥ (i− 1)2/3/K

]
e
− 1

2

∆2
k

K

4(i−1)2/3
+ K

4(i−1)2/3

≤P
[
T1(i− 1) < (i− 1)2/3/K ∨ Tk(i− 1) < (i− 1)2/3/K

]
+ e−

(i−1)2/3∆2
k

K

Where (a) comes from the law of total Expectation and (b) from the σ -sub Gaussianity assumption.
Now observe that by the exploration phase the probability that Tk(i− 1) < (i− 1)2/3/K is low. Indeed,
at every step t there is a probability t−1/3/K that we increase it. Let Bk(t) be a Bernouli random
variable that represent the event that at step t we choose arm k with probability t−1/3/K . We have

that Tk(i − 1) ≥
∑i−1
t=1Bk(t) . The variance of Bk(t) is t−1/3/K(1 − t−1/3/K) ≤ t−1/3/K and so the

variance of
∑i−1
t=1Bk(t) is upperbounded by 1

K

∑i−1
t=1 t

−1/3 ≤ 3(i−1)2/3

K .
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P
[
Tk(i− 1) < (i− 1)2/3/K

]
≤ P

[ i−1∑
t=1

Bk(t) < (i− 1)2/3/K

]

= P
[
−

i−1∑
t=1

Bk(t) > −(i− 1)2/3/K

]

≤ P
[

3(i− 1)2/3

K
−

i−1∑
t=1

Bk(t) >
3(i− 1)2/3

K
− (i− 1)2/3

K

]

≤P
[
ν −

i−1∑
t=1

Bk(t) >
2(i− 1)2/3

K

]

(?)

≤ 3K

4(i− 1)2/3

where (?) follows by Chebychev inequality with the function f(x) = x2 , i.e. P[X > a] ≤ E[X2]/a2 and
ν denotes the mean of

∑
tBk(t) . Thus:

P{k = arg max
j
µ̂j(i− 1)} ≤ P

[
T1(i− 1) < (i− 1)2/3/K ∨ Tk(i− 1) < (i− 1)2/3/K

]
+ e−

(i−1)2/3∆2
k

K

≤ P
[
T1(i− 1) < (i− 1)2/3/K

]
+ P

[
Tk(i− 1) < (i− 1)2/3/K

]
+ e−

(i−1)2/3∆2
k

K

≤ 3K

2(i− 1)2/3
+ e−

(i−1)2/3∆2
k

K

Hence, the average regret at round t is given by

Rt = tµ∗ −
t∑
i=1

εi
1

K

K∑
k=1

µk −
t∑
i=1

(1− εi)
K∑
k=1

µkP{k = arg max
j
ûj(i− 1)}

=

t∑
i=1

εi(µ
∗ − 1

K

K∑
k=1

µk) +

t∑
i=1

(1− εi)(µ∗ −
K∑
k=1

µkP{k = arg max
j
ûj(i− 1)})

= E[∆k]

t∑
i=1

εi +

t∑
i=2

(1− εi)
K∑
k=1

∆kP{k = arg max
j
ûj(i− 1)}

≤ 3

2
t

2
3 +

t∑
i=2

(1− εi)K
(

3K

2(i− 1)2/3
+ e−

(i−1)2/3∆2
∗

K

)
<

3

2
t

2
3 +

9K2(t− 1)1/3

2
+ (t− t2/3)Ke−

(t−1)2/3∆2
∗

K

where ∆∗ = minj∈{2,...,K}∆j . Note that E[∆k] ≤ 1 due to 0 ≤ ∆k ≤ 1 , and
∑t
i=1 εi =

∑t
i=1 i

−1/3 ≤∫ t
1
x−1/3dx ≤ 3

2 t
2
3 and

∑t
i=2(i− 1)−2/3 ≤

∫ t−1
1

x−2/3dx ≤ 3(t− 1)
1
3 .

Problem 2: UCB With Geometric Intervals

Consider the following slight variant of the UCB algorithm. We have K arms. As in the lecture notes,
assume that each of these K arms corresponds to a random variable which is 1-subgaussian. For the
first K steps we sample each of these arms once. After these K first steps we have an interval of length
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1 , then an interval of length 2 , then one of length 4 , and so on. At the beginning of each such interval
we choose the arm in the same manner as the UCB algorithm. More precisely, if t marks the beginning
of a new interval then

At = argmaxkµ̂k(t− 1) +

√
2 ln f(t)

Tk(t− 1)
,

where f(g) = 1 + t ln2(t) as for the case we discussed in the course and where Tk(t − 1) denotes the
number of times we have chosen arm k in the last t−1 steps. But unlike the standard UCB algorithm, for
all other steps in this interval we keep the same arm. Why might we be interested in such an algorithm?
One motivation is complexity. Computing which arm is best takes some effort. In this way we only have
to compute the best arm a logarithmic (in the time horizon) number of times.

Recall that in the analysis of the original algorithm the key to the analysis was to find a good upper
bound on Tk(n) for k > 1 , assuming that arm 1 is the optimum arm. In turn, we upper bounded the
probability that we choose arm k at a particular point in time t by the probability that arm 1 had an
empirical mean at least an ε below its true mean µ1 and that the empirical mean of arm k was above
µ1 − ε . In formulae we had

Tk(n) =

n∑
t=1

1{At=k} ≤
n∑
t=1

1
{µ̂1(t−1)+

√
2 ln f(t)
T1(t−1)

≤µ1−ε}
+

n∑
t=1

1
{µ̂k(t−1)+

√
2 ln f(t)
Tk(t−1)

≥µ1−ε ∧ At=k}
(1)

Let us proceed in the same fashion. Let n = K + 2L − 1 . In words, we are at the end of the L -th
interval, where L ∈ N .

(a) What is the expression equivalent to (1) for our case?

Solution: Let t(l) = K + 2l−1 . This is the time at the beginning of the l -th interval. In the
sequel, to lighten the notation, we will sometimes just write t . Then we have

Tk(n) =

L∑
l=1

1{At(l)=k}2
l−1 ≤

L∑
l=1

2l−11
{µ̂1(t(l)−1)+

√
2 ln f(t(l))
T1(t(l)−1)

≤µ1−ε}
+

L∑
l=1

2l−11
{µ̂k(t(l)−1)+

√
2 ln f(t(l))
Tk(t(l)−1)

≥µ1−ε ∧ At(l)=k}

(2)

(b) Look at the first of the two terms on the right of (1) in your equivalent expression. Derive a suitable
upper bound for this first term. If you do not have time for the whole derivation just write down
the first few steps. These are the most crucial ones.

Solution:

For the first term the derivation is almost the same as what we saw in the course. to ease the
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notation burden, we will write t(l) as t in the following (in)equalities. We have

E[

L∑
l=1

2l−11
{µ̂1(t−1)+

√
2 ln f(t)
T1(t−1)

≤µ1−ε}
] =

L∑
l=1

2l−1P

(
µ̂1(t− 1) +

√
2 ln f(t)

T1(t− 1)
≤ µ1 − ε

)

≤
L∑
l=1

2l−1
t∑

s=1

P

(
µ̂1,s +

√
2 ln f(t)

s
≤ µ1 − ε

)
(condition over T1 and use average is less than the sum)

≤
L∑
l=1

2l−1
t∑

s=1

e−
s
2 (

√
2 ln f(t)

s +ε)2

=

L∑
l=1

2l−1
t∑

s=1

e− ln(f(t))−
√

2s ln f(t)− s2 ε
2

≤
L∑
l=1

2l−1
1

f(t)

t∑
s=1

e−
s
2 ε

2

=

L∑
l=1

2l−1
1

f(t)

e−
ε2

2

1− e− ε
2

2

=
L∑
l=1

2l−1
1

f(t)

1

e
ε2

2 − 1︸ ︷︷ ︸
take Taylor series

all terms are positive; keep only first two

≤
L∑
l=1

1

f(t)
2l−1

2

ε2

≤ 2

ε2

L∑
l=1

2l−1
1

1 + t ln(t)2

≤ 2

ε2
(1 +

L∑
l=2

1

(l − 1)2
) (t ln(t)2 ≥ 2l−1(l − 1)2)

≤ 2

ε2
(2 +

∫ L−1

1

1

x2
)dx)

(upper bound discrete sum with integral)

≤ 6

ε2

Problem 3: Thompson Sampling with Bernoulli Losses

This problem deals with a Bayesian approach to multi-arm bandits. Although we will not pursue this
facet in the current problem, the Bayesian approach is useful since within this framework it is relatively
easy to incorporate prior information into the algorithm.

Assume that we have K bandits, and that bandit k outputs a {0, 1} -valued Bernoulli random variable
with parameter θk ∈ [0, 1] . Let π be the uniform prior on [0, 1]K , i.e., the uniform prior on the set of
all parameters θ = (θ1, · · · , θK) . Let

T 1
k (t) = |{τ ≤ t : Aτ = k;Yτ = 1}|,
T 0
k (t) = |{τ ≤ t : Aτ = k;Yτ = 0}|.

In words, T 1
k (t) is the number of times up to and including time t that we have chosen action k and

the output of arm k was 1 and similarly T 0
k (t) is the number of times up to and including time t that

we have choses action k and the output of the arm k was 0 .
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The goal is to find the arm with the highest parameter, i.e., the goal is to determine

k∗ = argmaxkθk.

In the Bayesian approach we proceed as follows. At time time t:

1. Compute for each arm k the distribution p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)) .

2. Generate samples of these parameters according to their distributions.

3. Pick the arm j with the largest sample.

4. Observe the output of the j -th arm, call it Yj(t) , and update the counters T 1
j and T 0

j accordingly.

Show that this algorithm “works” in the sense that eventually it will pick the best arm. More precisely,
show the following two claims.

1. Show that p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)) is a Beta distributed and determine α and β .

2. Show that as t tends to infinity the probability that we choose the correct arm tends to 1 . [HINT:

To simplify your life, you can assume that for every arm k , T 1
k (t− 1) + T 0

k (t− 1)
t→∞→ ∞ .]

NOTE: Recall that the density of the Beta distribution on [0, 1] with parameters α and β is equal to

f(x;α, β) = constant xα−1(1− x)β−1.

Further, the expected value of f(x;α, β) is α
α+β and its variance is αβ

(α+β)2(α+β+1) .

Solution 2. 1. A quick calculation shows that p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)) = f(x; 1 + T 1
k (t− 1), 1 +

T 0
k (t − 1)) . Note that this is the same calculation that we did when we showed that the Beta

distribution is the conjugate prior to the Binomial distribution. Explicity, and dropping the time
index as well as the index indicating the arm, we have

p(θ | T 1, T 0) ∼ p(θ)p(T 1, T 0 | θ)

∼ θT
1

(1− θ)T
0

= f(θ; 1 + T 1, 1 + T 0).

2. According to the hint and our computation above, the expected value at time t is equal to

1 + T 1
k (t− 1)

2 + T 1
k (t− 1) + T 0

k (t− 1)
.

By assumption T 1
k (t− 1) + T 0

k (t− 1)
t→∞→ ∞ and by the law of larger numbers T 1

k (t− 1)/(T 1
k (t−

1) + T 0
k (t− 1)) and hence also (1 + T 1

k (t− 1))/(2 + T 1
k (t− 1) + T 0

k (t− 1)) , converges to θk almost
surely. Therefore, our estimates for all means converge to the correct values almost surely. Further,
all variances tend to 0 and hence the probability that we choose the correct arm will tend to 1 as
t tends to infinity.

Problem 4: Time-Varying Bandits

Let ν be a time varying environment with K arms where all the arms except arm i has distribution
N (0, 1) and the i -th arm has distribution N (∆t, 1) . Note that the distributions changes with time –
hence the name “time-varying bandits.” Let π be our policy, where we assume that the policy does not
depend on time. Our time horizon is T .
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(a) Let ∆t = 1
tp , where p ∈ (0, 1) . Show that for every policy the regret is upper bounded by cT 1−p ,

where c is a constant. (HINT: Integrals are simpler than sums.)
Solution:∑T
t=1

1
tp ∝ T

1−p .

(b) Consider any policy whose regret scales as o(T 1−p) . I.e.,

lim
T→∞

RT (ν, π)

T 1−p = 0

Show that for such a policy we must have

lim
T→∞

1

T

T∑
t=1

Pν(At 6= i) = 0

Solution:

RT (ν, π) =

T∑
t=1

Pν(At 6= i)∆t

Suppose that

lim
T→∞

1

T

T∑
t=1

Pν(At 6= i) 6= 0.

Then

∃ε > 0 ∀T0 ∈ N ∃T ≥ T0
1

T

T∑
t=1

Pν(At 6= i) > ε

∃ε > 0 ∀T0 ∈ N ∃T ≥ T0
T∑
t=1

Pν(At 6= i) > Tε

Also note that since Pν(At 6= i) ∈ [0, 1] and ∆t is decreasing,

RT (ν, π) =

T∑
t=1

Pν(At 6= i)∆t ≥
T∑

t=T−
∑
Pν(At 6=i)

∆t

∝
∫ T

t=T−
∑
Pν(At 6=i)

∆t

Therefore, for some ε ,

∀T0 ∈ N ∃T ≥ T0 RT (ν, π) ≥
∫ T

t=T (1−ε)
∆t

=

∫ T

t=T (1−ε)

1

tp

=
1

1− p
(1− (1− ε)1−p)T 1−p

= cT 1−p , c > 0

which contradicts with the statement that,

lim
T→∞

RT (ν, π)

T 1−p = 0
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(c) Now suppose that p ∈ ( 1
2 , 1) . Let ν′ be an environment which has the same distributions except

at arm i′ 6= i . At arm i′ , ν′ gives reward distributed from N (2∆t, 1) . Show that

sup
T∈N

D(Pν(A1, X1, ..., AT−1, XT )||Pν′(A1, X1, ..., AT−1, XT )) <∞

Solution:
Note that ν and ν′ differ only in arm i′ , for environment ν , arm i is N (0, 1) and for environment
ν′ , arm i is N (2∆t, 1) . Therefore ∀T ,

D(Pν(A1, X1, ..., AT−1, XT , AT )||Pν′(A1, X1, ..., AT−1, XT , AT ))

=

T∑
t=1

∑
k

Pν(At = k)D(N (0, 1)||N (2∆t, 1))

=

T∑
t=1

Pν(At = k)2∆2
t

≤
T∑
t=1

2∆2
t

≤
∞∑
t=1

2∆2
t

<∞

(d) Show that, if,

lim
T→∞

1

T

T∑
t=1

Pν(At = i′) = 0

then,

lim sup
T→∞

1

T

T∑
t=1

Pν′(At = i′) < 1

(Hint: If d2(0||p) is a finite number, can p be very close to 1 ? )
Solution:
Note that by convexity of KL divergence and data processing inequality,

D

(
1

T

T∑
t=1

Pν(At = i)|| 1
T

T∑
t=1

Pν′(At = i)

)
≤ 1

T

T∑
t=1

D(Pν(At = i)||Pν′(At = i))

≤ 1

T

T∑
t=1

D(Pν(A1, X1, ..., XT , AT )||Pν′(A1, X1, ..., XT , AT ))

<∞

Since 1
T

∑T
t=1 Pν(At = i) goes to 1 by assumption, 1

T

∑T
t=1 Pν′(At = i) cannot go to 0 , because

otherwise the divergence would not be bounded. Therefore, 1
T

∑T
t=1 Pν′(At 6= i′) cannot get

arbitrarily close to 0 .

(e) Show that, if for p ∈ (1/2, 1) , R(ν, π) = o(T 1−p) , then

RT (ν′, π) 6= o(T 1−p)
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Solution:
Note that in the previous parts we have shown that if R(ν, π) = o(T 1−p) and p ∈ (1/2, 1) then

lim inf
T→∞

1

T

T∑
t=1

Pν′(At 6= i′) > 0

=⇒ lim
T→∞

1

T

T∑
t=1

Pν′(At 6= i′) 6= 0

The result part 2 holds also for the environment ν′ , therefore, by contrapositive of part 2,

lim
T→∞

RT (ν′, π)

T 1−p 6= 0

which is by definition, RT (ν′, pi) 6= o(T 1−p .

(f) Conclude that, if we are in an adversarial setting where the adversary is allowed to choose a time
varying environment, no matter how long we play,

√
T is the best regret we can ever hope to achieve.

That is, show that, for any policy π , for any α < 1/2 there exists a time varying environment ν
s.t.

RT (ν, π) 6= o(Tα)

Solution:
Choose p = 1/2 + ε such that ε > 0 and 1 − p > α , either RT (ν, π) 6= o(T 1−p) or RT (ν′, π) 6=
o(T 1−p) .
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