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Problem 1. (Sum of binomials)[7 pts]
You have seen in Homework 2 that the entropy function is related to the asymptotic value
of the binomial coefficient:

log, (jjp) — nh(p) + Ology n),

forn >1and 0 < p < 1, where h(p) & —plog, p — (1 — p)logy(1 — p) is the binary entropy
function. We want to derive a similar bound for the sum of binomial coefficients.

(a) [3 pts] Fix 0 < p < 1/2 and let C be the set of all subsets of {1,2,...,n} of size at
most np. Let X be a random variable uniformly distributed over C. Show that

H(X) < nh(p).

Hint: Let (X1, Xo,...,X,) be a random vector such that for every i, X; =1 ifi € X,
and X; = 0 otherwise. Argue that H(X) = H(X1, Xa, ..., X,).

(b) [1 pts] Using part (a), conclude that
Lnp)
3 (”) < 9nh(@)
: i)~
=0
(c) [3 pts] Using part (b), show that if Z ~ Binomial(n, p = 1), then
Pr <‘Z - g‘ > ca) < 91—c?/2

Vn

for every ¢ > 0, where o = *5- is the standard deviation of Z.

Hint: you can use (without proving it) the bound h(p) <1 —2 (5 — p)2.



Solution 1. (a) There is a one-to-one correspondence between X and (X, Xo,...,X,):
from the value of X we can uniquely determine the value of (X7, Xs,...,X,), and
viceversa. Hence, H(X) = H (X1, Xs,...,X,). Then,

H(X)=H(X,X,,...,X <ZH ) =nH(X;)

where the last equality is due to symmetry. Now, Pr(X; =1) <p < %, and therefore
H(X;) < h(p). Hence, H(X) < nh(p).
(b)
[np)
H(X) =loglC| = logz < ) < nh(p

Hence,

[np]
Z (n> < gnh(p)
, 'y




Problem 2. (Geometrical interpretation of mutual information)[8 pts]
In Homework 2 we introduced the conditional KL divergence between two probability kernels
Pyix : X = Y and Qy|x : X — Y given a distribution Px over X’ as

D(Pyx[|Qyvix|Px) £ ) Px(z)D(Pyix(-|2)|Qyx (]x)),

reX

where for every x € X, D(Pyx(:|2)||Qyx(:|z)) is the standard KL divergence between the
two distributions Pyx(-|z) and Qy|x(-|z) over V.

(a) [2 pts] Let X and Y be two random variables with joint distribution Pyy = Px Py|x.
Show that
[(X;Y) = Px(x)D(Pyx(|x)|| Py)
zeX
, where Py is the marginal distribution of Y. This formula shows that the mutual
information can be interpreted as a weighted average of the distances between the
conditional distributions Py|x(-|z) and the marginal distribution Py

(b) [3 pts] Show that for any distribution Qy on ),
I(X;Y) = D(Pyx[|Qy|Px) — D(Py Q).

You can think of this formula as a KL equivalent of the classical I(X;Y) = H(Y) —
H(Y|X).

(c) [3 pts] Show that
I(X:Y) = min D(Prix [Qv| Px).

According to this formula, the minimizing )y can be interpreted as the “center of
gravity” of the conditional distributions Py|x(:|x), and the mutual information as its
radius.



Solution 2. All the results can be proved working directly with the definitions of KL di-
vergence and mutual information. The following is a simple solution that makes use of the
results proved in Homework 2, Problem 3.

(a)

I(X;Y) = D(PxPrix[| PxPy) = D(Pyix|| Py|Px) = 3 Px(a)D(Pyix ()| P).

zeX

where the second inequality is due to Homework 2, Problem 3(b).
(b)

D(Py|Qy) +1(X;Y) = D(Py||Qy) + D(Px)y || Px|Py)
= D(PXYHPXQY)
= D(Pyx[|Qv[Px)

where the first inequality is due to part (a) by exchanging the roles of X and Y, the
second equality is due to the chain rule of the KL divergence (Homework 2, Problem
3(a)), and the third inequality is again due to Homework 2, Problem 3(b).

(c) By part (b) we know that I(X;Y") < D(Py|x||Qy|Px) for every Qy, since D(Py||Qy) >
0. Hence, I(X;Y) < ming, D(Pyx||Qy|Px). The equality is achieved by picking
Qy = Py, fOI" Wthh D(Py‘X||Qy|Px) = D(Py|X||Py‘Px> = I(X,Y)



Problem 3. (Lipschitz Bandits)[10 pts]

Assume for the following that you have a bandit algorithm at your disposal that has an
expected regret, call it R,,, bounded by ¢y/Knlog(n), where K is the number of arms and
n is the time horizon.

You have to design an algorithm for the following scenario. There are infinitely many bandits.
More precisely the bandits are indexed by z, € [0,1]. Bandit x has mean u(x) (which is
unknown). But you do know that the various bandits are related in the sense that

() — p(y)| < Llz —yl, (1)

where L is a known constant. This is known as the Lipschitz bandit problem due to the
Lipschitz condition (1).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e.,
assume that you pick K positions 0 < 21 < 29 < -+ < rx < 1 and run your given bandit
problem on these K bandits.

a) [b pts] Bound the expected regret as a function of K, n, L and the placement of points.

b) [5 pts| For n and L fixed, minimize your expression with respect to K and the placement
of points.

HINT: In order to simplify your computation, you might want to slightly loosen your bound.



Solution 3.

a) [b pts] Let «* be the position of the arm with highest reward and let u* = u(x*). Let
1* be the discrete arm that is closest to x*. Then by the Lipschitz condition

pr < pis + Ll — 27|
< max u; + L|zy — x|

1
<maxu; + =L max |r;4o1 — x;|.
= Max iy izl,---,K71| “r !

Hence

n

R, = pn —E[)_ X

t=1

= (" — max pi;)n + max pn — B[ X)]

t=1

1
< EanaXi:17...7K_1|xi+1 — x| + v/ Knlog(n).

b) [5 pts] We get the tightest bound for max;_; .. x_1|zi+1 — 25| if we pick the posi-
tions uniform. This will give us 1/(K + 1). However, to simplify the minimiza-
tion, let us upper bound this by 1/K. Hence, we have to take the derivative of
cy/Knlog(n) + %L/K wrt to K and then set the result to 0 and solve for K. We
get —((L — cK+/Knlog(n))/(2K?)) = 0 which gives us (ignoring integer constraints)
K = L3 (2/3n0/3) 10g(n)1/3)). If we plug this back into the expression we
arrive at 3/2c/3) LA/3n2/3) 1og(n)1/?),



Problem 4. (Frames: Reconstruction Algorithm)[10 pts]

Frames generalize the notion of orthonormal bases and have important applications in com-
pression, noise reduction, frequency analysis, etc. Formally, a frame is defined as a set of
vectors V' = {v;}/", in an n-dimensional complex vector space such that there exist constants
0 < A < B < oo such that for all vectors =,

m

Allzly <) e, v P < Bllzll3. (2)

k=1

m

We refer to the numbers {(x,vg) }™, as frame coefficients. Note that frames include or-

thonormal bases as the special case where A = B = 1.
Let us define the synthesis operator S associated with a frame V' via the following linear
mapping:

m

Sz = Z(w,vk>vk. (3)

k=1
Now imagine that you are given only the frame coefficients (and of course the frame itself)
and want to reconstruct the original signal x therefrom. In contrast to the synthesis step for
orthonormal bases, it generally does not hold that x = Sx if V' is a frame, hence one needs
to come up with a dedicated reconstrution algorithm.

One of the simplest such algorithms is the following:
Inputs: Sz, {v;}",, A, B

Initialize: xy < 0

For k=1,...,N:

Th < Th_1 + ﬁS(x — Tp_1)

Output: zy

a) [2 pts|] Show that for the spectral norm of self adjoint matrices U (i.e., matrices such
that U" = U), it holds that ||U|| = supj,—, |(z, Uz)].

Hint 1: the min-max Theorem states that for the spectrum A\ > Xy > -+ > A, of nxn
Hermitian matrices A € R"*" it holds that A\, = miny maxg,=1{(z, Az) | dim(W) =
n — k + 1}, where W are linear subspaces of R".

Hint 2: start by using the min-max Theorem to control the spectrum of ||U]|?.
Whenver you use the min-max Theorem, be explicit about how you apply

it!

b) [2 pts] Show that (I — 1255)z,2) < E-4|2|3.

c) [2 pts] Similarly, show that (I = 2595)z,x) > —g—jrf‘HxH% and show that this implies
that || — S| < 24.

A+B



d) [1 pts] Show that it holds

v — g = (I— AiBs) (z — z41). (@)

e) [3 pts] Derive an upper bound on the reconstruction error || z—zy||2 in terms of A, B, N

and ||z||y that decays geometrically in V.

Which kind of frames allow for to the most efficient signal reconstrution in terms of
required iterations of the above algorithm?



Solution 4.

a) Denote by Q" DQ the spectral decomposition of U. Then, ||U||? = max,,—1 2" UHUz =
max|,|=1(Qx)"D?(Qz) = (\*)? where \* denotes the eigenvalue of U with maximum
modulus. This implies that ||U]| = |A\*|, where |\*| can be found to be max =1 [{(x, Uz)]|
by combining the min-max Theorem variational descriptions of A\; for U and —U, re-
spectively.

b) Using a), it follows that

2 2 &
(= ﬁS)x z) = ||z - mz [(z, o) 2, Ve
k=1

this implies together with the frame condition that

24 ., B-—A

—_— —_—,—,—,—,_—,_— 2_—
(«r $)a,) < llally = g llall = F— el

AB

c) A calculation analogous to b) shows that

I— > _= 2
(( A+BS)1}$> > B+AH~’UH2

. Combining this with a) and b) gives the desired result.

2
A+ B

:( A+B )x_x’“ (6)

e) Repeating the step in d) N times, we obtain

9 N
T — T = <]_A+BS> (x — x0).

S(a: — Tp_ 1) (5)

T —Tp =T — Tk— 1—

Using ¢) together with sub-multiplicativity of the operator norm yields

2 N
o=l =1(1 = 2 55) @ -ale @
2 B — A\"
< | — ——S|IN|lx — < )
< - g S mm_(B+A)nm2 (5)

We can perfectly reconstruct x with just a single iteration of the above algorithm for
tight frames, i.e., frames with A = B.

10



