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Objectives for Lecture RL1 (Part 1-3)

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation, online and batch.

Part 1: Examples of Reward-based Learning 

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4

2
2



No labeled data?

REPETITION: Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. (already shown before the break)

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Reward information is available in the brain

Neuromodulator dopamine:

Signals “reward minus expected reward”

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. 

Inside the brain, reward information is transmitted by the neuromodulator 

dopamine. Neurons that use dopamine as their chemical transmission signal are 

situated in nuclei below the cortex and have cables (axons) that reach out to vast 

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator 

dopamine transmit a generic success signal that is not just reward, but something 

like ‘reward minus expected reward’.

To conclude, reward information is available throughout the brain.



Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing 

the shift of the middle bar

Feedback: 

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift



Previous slide (This example is not shown in class) 

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern 

with three bars. The task is to distinguish cases where the middle bar is shifted to 

the left from those where it is shifted to the right.

Bottom right: 

The minimal shift that is just recognizable decreases over time (1 block = 1 

practice session) indicating learning.

The feedback signal is just right or wrong.



Examples of reinforcement learning: animal conditioning



Previous slide. (already shown before the break)

If you put a rat into an environment it will wander around. Suppose that, at some 

place, it discovers a food source hidden below the sand of the surface. 

After a couple of trials it will go straight to the location of the food source which 

implies that it has learned the appropriate sequence of actions in the environment 

to find the food source.



Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. (This example is not shown in class)

Actual experiments for location learning are often performed in a Morris water 

maze. In the maze, there are 4 starting points and one target location which is a 

platform hidden (in milky water) just below the water surface. The rat does not like 

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating 

learning. 



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

REPETITION: Deep reinforcement learning



Previous slide. 

In chess a neural network trained by reinforcement learning discovers winning 

strategies by playing against itself. Similarly, a neural network playing Go against 

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and 

in May we will turn to Deep RL.



Deep reinforcement learning

Network for choosing action

2nd output for value of state:

probability to win

input

output

action:
Advance king

Learning by success signal

- change connections

aim:

- choose next action to win

aim for value unit:

- predict value of current 

position



Previous slide. (already shown before the break)

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win, or the ‘average reward’ that 

you can get starting from this state.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



Deep Reinforcement Learning:

Control a dynamic system (example of past minproject)

advance push 

left

actions

value

Example: Play Pong (Atari game)



Previous slide. 

In the miniproject training will be based on reward: successful  behavior  of the 

simulated agent will give positive rewards. 



Quiz: Rewards in Reinforcement Learning 

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[ ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point

[ ] A dog can learn to do tricks if you give it rewards at appropriate 

moments

[x]

[x]

[ ]

[x]

[x]



Previous slide. Your notes (already shown before the break)

. 
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Reinforcement Learning and SARSA 

Part 2: Elements of Reinforcement Learning

- Examples of Reward-based Learning

- Elements of Reinforcement Learning



Previous slide.

We now start with the formalization of reinforcement learning 



REPETITION: Elements of Reinforcement Learning:

-states 

-actions

-rewards 



Previous slide. 

Reinforcement learning needs states, actions, and rewards.



Elements of Reinforcement Learning:

- discrete states 

- discrete actions 

- sparse rewards



Previous slide (already shown before the break)

.

Note that, for standard formulations of Reinforcement Learning Theories this 

(normally)  implies discretizing space and actions.

We will study continuous-space formulations only next week. 



REPETITION: Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′
𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



REPETITION: States in Reinforcement Learning:

- discrete states: 

starting state

arrival state 

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation 

= generalized ‘location’ of actor in environment

a



Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the 

momentary situation. We can think of the   generalized ‘location’ of the actor in the 

environment

To get acquainted with this, let us look at an example.



reward if tip above line

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

States?

 discretize!

Suppose 5 states per dimension,

How many states in total?

[ ] 5

[ ] 25

[ ] 125

[ ] 625

3 actions:        = no torque, 

= torque +1 at elbow,  

= torque -1 at elbow

a1

a2

a3

5x5x5x5=625



Previous slide. 

The aim of the acrobat is to move the tip above the blue line. To achieve this 

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions



Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and 

shorter indicating that the acrobat has discovered (via reinforcement learning) a 

smart sequence of actions so as to reach the target (i.e., move the tip above the 

reference line)



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

after 400 episodes



Previous slide. 

One example of an action sequence, after learning, is shown.



Summary: Elements of Reinforcement Learning

- discrete actions: 

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

( later we try to model in continuum)     

𝑎



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we 

also think of the states as discrete (but next week we will go to continuous state 

space) 



Quiz: Reinforcement Learning for backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces  per player,

How many states in total?

[ ] 100<n<500

[ ] 500<n<5000

[ ] 5 000<n<50 000

[ ] n>50 000

N>24x24x23x23>23x23x23x23>250 000



Previous slide. 

Backgammon game. There are 24 fields on the board. Players have several 

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many  different states are there in total?
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Part 3: One-step horizon (bandit problems)

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)



Previous slide. 

We start with the simplest discrete example: the game is over and reward is given 

after a single step.



coins

buttons

Slot Machine

3-armed bandid

action=button press

One-step horizon games (bandit)



Previous slide. 

The standard example is a multi-armed bandit, or slot machine: you have to 

choose between a few actions, and once you have pressed the button you can 

just wait and see whether you get reward or not.



One-step horizon games 𝑠

𝑠′

a1

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)



Previous slide. 

One of the most central notion in reinforcement learning is the Q-value. 

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get 

if you take action a starting from state s.



One-step horizon games Blackboard1:

Q-values



Your notes. 



One-step horizon games: Q-value

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Optimal policy (greedy)

take action a* with

Q(s,a*)  ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known: 

Optimal policy is also called ‘greedy policy’

=6 =2 =5



Previous slide. 

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.



One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Previous slide. 

Teaching monitoring – feedback for the teacher.



Exercise 1 (from earlier session today)

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 −𝑄 𝑠, 𝑎 ]

𝑟𝑡

h



Next Lecture at 12h15

Exercise 1 (in class)



Blackboard2:

Exercise 1



One-step horizon: Proposition

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 



Convergence in Expectation
After taking action a in state s, we update with

(i) If (1) has converged in expectation given (s,a), then 
 𝑄 𝑠, 𝑎 has a value,

(2) 
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around the empirical mean
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
decrease. If  𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

converges for fixed h, then the empirical 

mean approaches 𝑸 𝒔, 𝒂 .

 𝑄 𝑠, 𝑎 = 𝐸  𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we set the left-

hand-side to zero. The exact value of h is not relevant, as discussed in the theorem. Part (i) of the 

theorem states that the expectation value of  𝑄 𝑠, 𝑎 is the correct Q-value. For a quick proof of 

𝐸  𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) see the video. On the blackboard a stronger statement was shown:
 𝑄 𝑠, 𝑎 = 𝑄(𝑠, 𝑎). 

Convergence in expectation is equivalent to imagining that you start millions of trials with the same 

value  𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like an infinite ‘batch’ of 

examples. The stochastic variables are the next state s’ and the received reward 𝑟𝑡. The value of 
 𝑄 𝑠, 𝑎 is not stochastic but ‘frozen’. Therefore (trivially) 𝐸  𝑄 𝑠, 𝑎 |𝑠, 𝑎 =  𝑄 𝑠, 𝑎 .
In practice, we do not have expectations but online updates with fluctuations. It is important 

that h is small at the end of learning so as to limit the amount of fluctuations. Part (ii) states that 

online mean for small learning rate also goes to  the correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part 

(i) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The 

average is across all those time steps where action a was chosen in state s, denoted as  
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
.  We assume convergence, hence our hypothesis reads

∆ 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝜼 𝑟𝑡 −  𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 0 . 

The specific result  𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝑸 𝒔, 𝒂 is based on linearity and is not true for the multi-step 

horizon that we discuss later. 



Proof: Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then 
 𝑄 𝑠, 𝑎 has an expectation value,

(2) 

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

𝐸  𝑄 𝑠, 𝑎 =  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              

Blackboard3:

Proof of (i)

Note: the expectation is over all possible ‘futures’. For the bandit problem 

the future is defined by the possible next states and possible rewards.



Your notes. 



Blackboard3

converged in expectation  𝐸(∆  𝑄 𝑠, 𝑎 |s,a)=0

expectation of all

possible futures with 

correct statistical 

weight

we always start in 

(s,a) while the 

system is frozen

Perspective similar to a batch mode: 

update only after (infinitely) many trials that 

all start in (s,a) with the same value  𝑄 𝑠, 𝑎
=

update the expectation over all possibilities 

that may occur in the next time step.

Part (i) of Theorem



Previous slide:
 𝑄 𝑠, 𝑎 denotes the current estimate of the Q-value. Claim: If Q no longer 

changes (in expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes 

of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of  𝑄 𝑠, 𝑎 and run MANY times (N to infinity) a test with the 

state-action pair (s,a) as a starting condition. Then you evaluate the resulting 

‘batch update’ averaged across all these examples. If the batch update with 

millions of examples is zero, that implies that you have converged to the correct 

value.

In the copies of the  blackboard notes, there are two versions of the proof:

First, on page 2, top half of page a SIMPLE proof.

Second, on page 4 (final page), the stronger proof with more in-between steps 

showing  𝑄 𝑠, 𝑎 = 𝐸  𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝐸  𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎



Blackboard3
Part (ii) of Theorem:

We work with the online update ∆  𝑄 𝑠, 𝑎 . With finite learning 

rate, the value of   𝑄𝑡 𝑠, 𝑎 fluctuates around a mean

 𝑄𝑡 𝑠, 𝑎
 𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

Under the hypothesis of the theorem (i.e., the mean converges), 

then the  mean is equal to the ‘correct’ Q-value.

 𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

𝒕|𝒔,𝒂



Notes. 

Proof  of part (ii) of the theorem is in the Blackboard notes on page 3  – think 

about it. The proof works because of linearity. 

More information regarding the philosophy of different averaging procedures also 

in Exercise 3 this week and beginning of the lecture of  next week. 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 

Iterative algorithm (1) converges in expectation



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol a instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Teaching monitoring – monitoring of understanding 

[ ] today, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Previous slide. 

Teaching monitoring – feedback for the teacher.


