Exercise Set 2 : Solution
Quantum Computation

Exercise 1 Matrixz representation of a few gates / circuits

(a) The Hilbert space here is C® and its matrix representation in the computational basis
{|OOO>, |001), |010), |011), |010), |101), |110), |111)} is given by
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(b) The matrix representation of this circuit in the computational basis {|00>, |01), |10}, |11>}
of C* is given by
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(c) The matrix representation of this circuit (in the same basis) is given by
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(d) The matrix representation of this circuit (in the same basis) is given by

0010 1000\ /0010 0100
000 1 01000001 1000
NOT,-CNOT-NOT. = | | o o | 000 1 1000] |0oo010
0100/ \oo10/ \o100 000 1

All the above matrices are permutation matrices, and are also equal to their own inverse.



Exercise 2 Fredkin gate

(a) The AND gate can be represented as follows with only the Fredkin gate :

a T a
b — —— b® ab
0 —|SWAP AN b

The OR gate is then (using a Vb = NOT(NOT(a) A NOT(b)))
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Another solution for both AND and OR uses a combination of CSWAP and CNOT :
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For the OR gate, alternatively, we then have :
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(b) The Fredkin is a controlled SWAP which swap’s the last two bits if the first one is equal
to 1. Thus we find
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(¢) From the matrix representation of Fredkin, we see that to obtain the matrix represen-
tation of CCNOT, we have to permute on rows 5,6,7,8. With a bit of thought one can
find that the CCNOT gate can be represented as

?
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Another way is by noting that

CNOT|z,y) = |z,z @ y),
CCNOT|z,y,2) = |7,y, 2 ® zy),
CSWAP|z,y,2) = |z, y @ x(y ® 2), 2D z(y @ 2)).

Thus an input |z, y, z) becomes |z, y@z, z) after the first CNOT gate, |z, y®zBxy, zHzy)
after the Fredkin gate and |z, y, z @ xy) after the second CNOT gate.

Exercise 3 Mach-Zehnder interferometer

(a) A matrix U is unitary if UUT = UTU = I. Note that for Hadamard and NOT(X) gates,
we have HH' = H'H =1, XXT = X'X = I. For HX H, we have

HXHHXH) = HXHH'X'H' = HXX'H' = HH' = I

With similar computations, (HXH)'HXH = I. Thus HX H is unitary.

(b) We obtain successively for |¢) = ag |0) + a1 |1) :
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(c) The above gives

HXH|0) =10) HXH|1) = —|1) HXH|+)=1]-) HXH|-)=|+)
Exercise 4 Production of Bell states

(a) State (i) is a Bell entangled state (see below).

State (ii) is a product state = |0) ® \% (10) 4+ 11)).

State (iii) is an entangled state (cannot be written as (ag|0) +aq 1)) ® (5o |0) + 1 [1))).
(iv) is a product state = \% (10) = 1)) ® \/AE (10) —|1)).
State (v) is also a product state = \/Li (10) — 1)) ® \/ié (10) +[1)).

NB : An easy criterion for deciding when state

[) = 00 [00) + g1 [01) + @10 [10) + ey [11)

is a product state is det Qoo @or) _
Q1o 11



(b) A direct computation gives

(CNOT)(H @ 1) |z) © [y) =

(C’NOT)H |z) @ |y)

(CNOT)I(I0> (=D 1) @ y)
—%CNOTlO,y%L(\/i) . Y)
= 5l0+ S
More explicitly, we enumerate all the cases :

(CNOT)(H ® I)]00) = (CNOT) %(100 +[10) ) = %(mo + [11) ) = |Boo)
(CNOT)(H ®I)|01) = (CNOT) %(ml +]11) ):%(m +[10) ) = |Bo1)
(CNOT)(H ® I)]10) = (CNOT) %(mo |10) ):%(mo 11) ) = |Bio)
(CNOT)(H ® I)|11) = (CNOT) %(]00 11)) = %(\01 10) ) = |B1)

(c) The circuit corresponding to |B,,) =

(CNOT)(H®I)|x)®y) :
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(d) The circuit corresponding to |z) ® |y) =
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H

— |z)

1Y)

A\ 4



