Artificial Neural Networks (Gerstner). Solutions for week 3

Markov Decision Processes

Exercise 1. Optimal policies for finite horizon.

Create a Markov Decision Process where the optimal horizon-T' policy depends on the time step, i.e.
there is at least one state s and one pair of timesteps ¢ and ¢’ such that 7 (a|s) # 7(*')(a|s).

Hint: You can choose T' = 2 for simplicity.

Solution:

Consider the simple MDP in Figure 1, where we have three states s1, s2, and s3. There are 2 actions
available at s1 and s2: Action al takes the agent from both states s1 and s2 to state s3, through which
the agent recieves a deterministic reward of +2. Action a2 takes the agent from state sl to s2 and
from s2 to sl, while the agent recieves a deterministic reward of +1 through both transitions. State
s3 is a terminal state with a dummy action al that keeps agents at state s3 (without any reward).
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Figure 1: MDP of Exercise 1
For T = 2, it is easy to see that the optimal policy is given by

7D (a|s1) = da,a2 and 7D (a|s2) = da,02
W(Q)(a\sl) = 0g,a1 and 72 (a]s2) = 0q,a1-

Exercise 2. Shortest path search.

Let S = {s1,52,83,...} denote a set of vertices (think of cities on a map) and let the vertices be
connected by some edges e, s; € (0,00] (think of distances between cities), where es, s, = oo indicates
that there is no direct connection between s; and s;. Dijkstra’s algorithm for finding the shortest
paths to some goal vertex g can be written in the following way (we show the lenght of the shortest
path from vertex s to g by V(s)):

e For each vertex s € S, initialize all distances from g by V(s) < oo.
e Initialize the distance of g from itself by V(g) « 0.

Define and initialize S « S.

While S is not empty

— s; «—argmin__s V(s)
— Remove s; from S

— For each neighbor s; of s; still in S: V(s;) < min(V (s;), V(s;) + €s;.57)-

seS

Return V(s) for all s € S.


https://en.wikipedia.org/wiki/Dijkstra's_algorithm

The output V' (s) of Dijkstra’s algorithm is equal to the lenght of the shortest path from s to g. In this
exercise, we formulate the problem of finding the shortest path as a dynamic programming problem.

a. What is the equivalent Markov Decision Process for the problem of finding the shortest paths
to some goal state?
Hint: Define the goal state as an absorbing state and describe the properties of 7§ and p§, ..

b. Compare the value iteration algorithm on the MDP of part a with Dijkstra’s algorithm.

Solution:
a. We consider a deterministic MDP with the state space S and the following properties:

(i) v=
(ii) Available actions in each state s € S are moving to one of the neighbouring states.
(iii) The reward corresponding to moving from s € S to s’ € S is equal to —e; 4.
(iv) The goal vertix g € S is the only terminal state.
Since all rewards are negative, the optimal policy in this MDP is to get to the terminal state

g € S with largest cumilative reward which is equivalent to shortest distance. Hence, the negative
optimal value —V*(s) is equal to the shortest distance from vertix s to the source g.

b. Dijkstra’s algorithm is similar to value iteration, but it has some fundamental differences:

(i) In Dijkstra’s algorithm, the set of states whose values are updated in each iteration decreases
by one after each iteration (s; is removed from S).

(ii) In Dijkstra’s algorithm, the arg max over all possible next actions is removed and replaced
by a comparison between the current value of the state (V/(s;)) and the value of the action
that takes the agent to s; (i.e., V(si) + €s,s;)-

(iii) Dijkstra’s algorithm uses the fact that transitions are deterministic and replace the aver-
aging over next state s’ in the value update directly by the value of the next state.

Exercise 3. Bellman operator.
Proof that the Bellman operator is a contraction.
Hint: Show the contraction with the infinity norm, i.e.
175 [X] = T [Y][loo = max |T5[X]s = T, [Y]s| < 7[[X = Voo,
where the last inequality is to be proven. You can use the notation Qﬁg =174+ gesPr g Xy and
the facts that | max, Q%, — max, QY /| < max, |Qa — Q)| and Y sp® ., = 1.
Solution:

We start with replacing the Bellman operators in the hint by their explicit definitions

I75X] — T, [Y )L, = max |7, (X ], — T (Y]] = max

max QX — maxQ},
a a’

We can now use the fact | max, QX — max,/ Qza,\ < max, |QX, — QY | as well as the definition of Q%
and write

||T7[X] - TV[Y]HOO < mgxmgx ‘Q?z; - Qg/a

(7‘? +7 ZP?QS/XS'> — (7‘? +y D Py >‘

= max max
S a
s'eS s'eS
= maxmax |7y E P (Xg —Yy)| < 7/ max max E P | Xy — Yy,
s'eS s'eS




where, for the last inequality, we used the fact that [> Zy¢| <>, |Zy| for any vector Z. In addition,
we have

’Xs/ — )/s/| S H;E}X‘Xs/ — }/S” = HX — YHoo .
Combining the last two inequalities, we have

I [X] = T, [Y ]| < ymaxmax Y plg [|X =Y,
s'eS

<H|IX - YHoomaxmapr‘;_,S/,
° ¢ s'eS

and, because ) 5Pt =1, we have
175 [X] =T [Y][[ o < v IX =Yl -
If v < 1, then the last inequality implies that the operator T’ is a contraction mapping.

Exercise 4. Coding exercise: Value and policy iteration.

Implement value and policy iteration in python to solve the MDP from Example 1 from the lecture.



